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Abstract
In recent years, both online and offline deep learn-
ing models have been developed for time series
forecasting. However, offline deep forecasting
models fail to adapt effectively to changes in time-
series data, while online deep forecasting models
are often expensive and have complex training
procedures. In this paper, we reframe the on-
line nonlinear time-series forecasting problem as
one of linear hyperdimensional time-series fore-
casting. Nonlinear low-dimensional time-series
data is mapped to high-dimensional (hyperdimen-
sional) spaces for linear hyperdimensional pre-
diction, allowing fast, efficient and lightweight
online time-series forecasting. Our framework,
TSF-HD, adapts to time-series distribution shifts
using a novel co-training framework for its hyper-
dimensional mapping and its linear hyperdimen-
sional predictor. TSF-HD is shown to outperform
the state of the art, while having reduced inference
latency, for both short-term and long-term time
series forecasting. Our code is publicly available
at: https://github.com/tsfhd2024/tsf-hd.git

1. Introduction
Time series forecasting methods have shown significant util-
ity in fields ranging from smartgrids to traffic management
(Hyndman & Athanasopoulos, 2018), and this usefulness
has driven increasing research into better forecasting models
(Bhatnagar et al., 2021). However, as noted in (Pham et al.,
2022), naive training of deep forecasting models or offline
forecasting models may not generalize well to streams of
time-series data, requiring the forecaster to be trained on-
line. Recent works such as OneNet (Zhang et al., 2023),
TCN (Woo et al., 2022) and FSNet (Pham et al., 2022) have
thus focused on training online deep forecasting models
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that aim to use novel training paradigms to enable deep
neural networks to rapidly assimilate information from a
time-series data stream.

However, these online deep forecasting models are expen-
sive and difficult to deploy on edge platforms compared to
linear time-series forecasters such as ARIMA (Box & Jenk-
ins, 1968). Despite the success of deep forecasting models,
it has also been shown in prior work (Zeng et al., 2023) that
certain linear models such as NLinear can outperform trans-
former methods and deep forecasting methods in long-term
time-series forecasting. Our research is thus motivated by
this tradeoff between performance and overhead between
linear and nonlinear models in time-series forecasting.

This work efficiently addresses that tradeoff by framing
the forecasting problem as one of task-free online hyper-
dimensional learning. Hyperdimensional computing is a
learning paradigm that uses high-dimensional (hyperdimen-
sional) mappings of nonlinear input data distributions to
enable linear classification or regression (Kanerva, 2009;
Hernández-Cano et al., 2021) in high dimensions. This lever-
ages the fact that functions which are nonlinear in low di-
mensions can be approximated as linear in high dimensions
while preserving distances (Räsänen, 2015). Using this, we
can run high-dimensional linear computations for nonlin-
ear time-series forecasting, allowing rapid, low-overhead
model updates from incoming samples in a data stream
while maintaining state-of-the-art performance.

We thus propose TSF-HD, an online hyperdimensional time-
series forecasting framework leveraging the rapid training
and inference capabilities of linear time-series forecast-
ing models while allowing state-of-the-art prediction ac-
curacy. This is accomplished using a novel online training
method for the hyperdimensional computing system and
implementing an innovative co-training method for the high-
dimensional mapping (the encoder) and the linear high-
dimensional regressor. This co-training of regressor and
encoder allows us to maintain the accuracy of linear pre-
dictions made by the regressor as the nonlinear time series
shifts. We emphasize that TSF-HD is a task-free, online
learning model - it does not require explicit detection of
task shifts (changes in time series distributions, as in (Pham
et al., 2022)) or time series concept drift. TSF-HD instead
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learns online using current samples through trainable high-
dimensional mappings of input data and high-dimensional
linear regression. We further provide a method for autore-
gressive time-series hyperdimensional time-series forecast-
ing, allowing greater accuracy over long prediction horizons
or noisy time-series data by framing the problem as one of
autoregressive online hyperdimensional time-series forecast-
ing. For low-overhead, low-latency prediction we provide a
sequence-to-sequence model of TSF-HD.

In summary, our work provides the following innovations:
(1) First, we provide a novel formulation of the time series
forecasting problem as one of task free, online hyperdimen-
sional learning, taking advantage of the linearity of high
dimensional mappings of nonlinear input data; (2) Second,
we provide a novel online co-training framework for the
encoder and regressor to enable the linearity of the mapping
to be maintained as the time series evolves, without requir-
ing explicit knowledge of task shifts. This is enhanced by
the provision of an autoregressive version of TSF-HD for
greater precision on noisy data streams; (3) Lastly, we con-
duct experiments against a variety of baselines to validate
TSF-HD in terms of accuracy, latency and overhead.

The rest of the paper is organized as follows. Prior work is
discussed in Section 2, followed by problem framing and
methods in Section 3. In Section 4, we present experimental
results and finally conclude in Section 5.

2. Related work
2.1. Time series forecasting (TSF)

In recent years, advancements in data availability and com-
putational power have led to the emergence of deep learning-
based techniques in time series forecasting (TSF). Tradi-
tional methods such as Autoregressive Integrated Moving
Average (ARIMA) (Box & Jenkins, 1968), Autoregressive
Neural Networks (AR-Net) (Triebe et al., 2019), the Holt-
Winters seasonal method (Holt, 2004), and Gradient Boost-
ing Regression Trees (GBRT) (Friedman, 2001) provide
theoretical guarantees, but are typically applied to univari-
ate time-series forecasting. Furthermore, these methods are
often outperformed by deep forecasting models.

Recurrent Neural Network (RNN)-based approaches, such
as those discussed by (Rangapuram et al., 2018), are ex-
amples of deep forecasting models with internal memory
that are able to make predictions based on past information.
However, RNN-based models face challenges due to vanish-
ing or exploding gradient problems and inefficient training
procedures. Transformers, exemplified by the Informer
model (Zhou et al., 2021), have outperformed the RNN
paradigm, leveraging the self-attention mechanism’s capa-
bility to capture correlations in temporal sequences. SCINet
(Liu et al., 2022) is a convolutional deep forecaster that

recursively downsamples and convolves data to extract com-
plex temporal features for accurate time-series forecasting.
Despite the success of transformers in time series forecast-
ing, simpler linear models like NLinear (Zeng et al., 2023)
have outperformed transformer methods in some long-term
time series forecasting applications in terms of accuracy.

However, none of the methods described above are adapted
to online time series forecasting. Recent work in online
time series forecasting includes an online Temporal Con-
volutional Network (TCN) with 10 hidden layers that suc-
cessfully captures periodic patterns (Woo et al., 2022). The
Experience Replay method (ER) (Chaudhry et al., 2019)
enhances online TCN by adding episodic memory to mix
old and new learning samples, improving generalization.
DER++ (Buzzega et al., 2020) augments the standard ER
with an ℓ2 knowledge distillation loss on the previous logits
to align the network’s logits, ensuring consistency with its
past behavior. FSNet (Pham et al., 2022), or Fast and Slow
Learning Network, combines rapid adaptation to new data
with memory recall of past events to enable adaptation to
task shifts (concept drift) in the time series. OneNet (Zhang
et al., 2023) extends the FSNet implementation by integrat-
ing and updating two models in real-time: one concentrates
on modeling dependencies over time, and the other focuses
on dependencies across variables. We note that these online
deep forecasters are expensive and cumbersome to train,
and may not be applicable to low-latency forecasting in a
shifting nonlinear time series stream.

Using high-dimensional (hyperdimensional) mappings (en-
codings) to forecast a nonlinear data stream using linear
hyperdimensional regression has not been explored in prior
work, primarily due to the lack of a co-trainable encoder and
regressor in state of the art hyperdimensional regressors like
RegHD (Hernández-Cano et al., 2021; Chen et al., 2022).
This deficiency prevents them from adapting to time-series
task shifts and learning online in an effective manner.

2.2. Online learning

Online learning (Lopez-Paz & Ranzato, 2017) aims to learn
several tasks sequentially with limited access to past experi-
ences. A good learner is one that achieves the best trade-off
between adaptation to new tasks and maintenance of past
knowledge from previous tasks, a tradeoff known as the
stability-plasticity dilemma (Grossberg & Grossberg, 1982).
One popular framework is the complementary learning sys-
tem (CLS) (McClelland et al., 1995; Kumaran et al., 2016).
Continual deep learning methods using the CLS framework
augment slow deep learning algorithms with the ability to
learn quickly from a data stream, either through experience
replay (Lin, 1992; Riemer et al., 2018; Rolnick et al., 2019;
Aljundi et al., 2019; Buzzega et al., 2020) or via fast and
slow learning components (Pham et al., 2020; Arani et al.,
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2022; Pham et al., 2022).

(a) Distance preservation across hyperdimensional map-
pings of input sequences H(x).

(b) The mean cosine similarity between rows of the
encoder matrix We used to map low-dimensional input
sequences to the hyperdimensional space is seen to
be very low as the time series evolves (t increases),
preserving orthogonality while updating We online.

Figure 1. Distance preservation (linear relationship between dis-
tances) and orthogonality of the different components of the train-
able encoder matrix We across hyperdimensional mappings of
input sequences H(x) = x.We (ETTm1 dataset), showing preser-
vation of the properties detailed in (Räsänen, 2015).

3. Online Time Series Forecasting
3.1. Problem Framing and Preliminaries

In this paper, we focus on the online multivariate time se-
ries forecasting (TSF) problem. Given a long sequence
X∗ ∈ RN×L where L is the length of the sequence X∗ and
N is the number of variables in the time series X∗ (the di-
mension of the input x ∈ X∗) and given a look back window
of fixed length T , at timestamp t, the time series forecasting
task is to predict Xt+1:t+τ = [xt+1, ..., xt+τ ] based on the
past T steps Xt−T+1:t = [xt−T+1, ..., xt] ∈ RN×T . Here
τ is the referred to as the forecast horizon. Each data sam-
ple x ∈ RN . Online learning assumes that data arrives
in a stream, drawn from a shifting distribution. Our ap-
proach leverages the ability of hyperdimensional spaces to
represent nonlinear input data in low dimensions as linear
in high dimensions (Räsänen, 2015). The learner is not
aware when the data changes in trend (i.e, moves from one

task to another) making the online time series forecasting
problem one of task-free online learning. We thus use hyper-
dimensional regression with a trainable hyperdimensional
mapping (the encoder) and a novel co-training framework
for the encoder and the linear hyperdimensional regressor.

Hyperdimensional (HD) computing represents data using
extremely high dimensional spaces (Kanerva, 2009) referred
to as ‘hyperspaces’. A vector in this space is referred to as a
‘hypervector’. Multivariate hyperdimensional regression in
TSF-HD involves three primary phases:

Hypervector Encoding: In this phase, an input data se-
quence X ∈ RN×T is transformed from the feature space
X to a hyperspaceH (dim(H) = D ≫ T ) using a function
H : X → H. The encoding can be accomplished using
various methods such as N-gram based encoders (Imani
et al., 2018), or linear projection (Dutta et al., 2022). Our
work uses a trainable encoder consisting of a linear mapping
followed by a ReLU function, yielding

H(X) = 1X>0[X.We + be] (1)

where We ∈ RT×D is a matrix whose rows consist of
hypervectors mapping the input X to different components
of the HD space, 1X>0(.) denotes the ReLU function and
be ∈ RD is a trainable bias added to each row of X.We.

As per (Räsänen, 2015), based on the Johnson-Lindenstrauss
lemma, the distances between x and y (x, y ∈ X ) are pre-
served under the encoder mapping H(.) within a scaling
factor for a non-trainable, randomized projection matrix
mapping X toH, allowing an HD system to take advantage
of the linearity of high dimensional mappings of lower di-
mensional nonlinear input data. To enable forecasting on a
shifting time series, our trainable encoder system evolves
with the time series sequence while still preserving dis-
tances, as seen in Figure 1a, where the plot between the
distances ∥x− y∥2 and ∥H(x)−H(x)∥2 is linear, where
∥.∥2 denotes the L2 norm. Similarly, as per (Räsänen, 2015),
for a non-trainable randomized projection matrix mapping
X toH, the hypervectors that make up the matrix are ideally
orthogonal to one another. We see that this approximately
holds through the time series in Figure 1b for our trainable
matrix We, with the average cosine similarity between its
rows remaining near-zero. Further validation of distance
preservation and orthogonality of We can be found in Ap-
pendix A. Hyperdimensional computing using our novel
trainable encoder and regressor formulation thus allows
us to take advantage of the desirable properties of hyper-
dimensional encoding detailed in (Räsänen, 2015) while
continually updating our model as the data stream shifts.

HD System Training: For our linear HD regressor, the
goal is to find an approximation X̃t+1:t+τ , given an en-
coded input sequence taken from the lookback window,
H(Xt−T+1:t) to minimize a loss function L(.) calculated
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from the regression error across the prediction horizon
(X̃t+1:t+τ −Xt+1:t+τ ). This involves a trainable regressor
hypervector or matrix, denoted as Wr, and a trainable re-
gressor bias br. Wr and br are updated in conjunction with
We and be to minimize L(X̃t+1:t+τ − Xt+1:t+τ ), using
online gradient descent (OGD) with the AdamW optimizer.

Our input data is not normalized or standardized, simu-
lating a real-time online learning environment, and data
point values may vary significantly. An L2-norm-based
loss function could lead to rapid divergence of the loss
due to such variations. While an L1 norm is more suit-
able, its non-differentiability around 0 presents a challenge.
Therefore, we opt for the Huber loss (LH ), as detailed for
a single prediction step (τ = 1) in Eq. 2. We denote
∆xt+1 = xt+1 − x̃t+1, yielding:

LH(xt+1, x̃t+1) =

{
1
2∥∆xt+1∥2, if |∆xt+1| ≤ 1

∥∆xt+1∥1 − 1
2 , otherwise

(2)
The total loss is thus

L(xt+1, x̃t+1) = LH(xt+1, x̃t+1) +R(We,Wr, be, br)
(3)

whereR(.) is an L2 norm regularization function.

HD Inference The prediction X̃t+1:t+τ is generated after
mapping the input samples Xt−T+1:t to the hyperspaceH
as in Equation 1. A single-step prediction x̃t+1 is then
computed as:

x̃t+1 = R(H(Xt−T+1:t)) = [((H(Xt−T+1:t))1 .Wr, ...

..., (H(Xt−T+1:t))N .Wr] + br
(4)

where H(.) is the encoding function of Equation 1 and R(.)
is the regression function that uses the regression matrix
Wr and bias br. (H(Xt−T+1:t))i denotes the ith row of
an N × D-dimensional encoded input sequence. The re-
gressor function for the ith element of the predicted vector
(1 ≤ i ≤ N ) is thus (x̃t+1)i = Ri(H(Xt−T+1:t)) =
(H(Xt−T+1:t))i .Wr + br

We provide two distinct TSF-HD frameworks: the autore-
gressive AR-HDC and the sequence-to-sequence Seq2Seq-
HDC. AR-HDC is more accurate than Seq2Seq-HDC, but
incurs higher overhead and is slower for long-term forecast-
ing than Seq2Seq-HDC.

3.2. TSF-HDC Frameworks

3.2.1. OVERVIEW

Figure 2 presents an overview of both the autoregressive ver-
sion of our framework, called AR-HDC, and the sequence-
to-sequence version, called Seq2Seq-HDC. Both models
use T multivariate past samples Xt−T+1...t ∈ RN×T , to
predict the next τ samples, x̃t+1 to x̃t+τ .

Figure 2. Autoregressive (AR-HDC) & Sequence-to-Sequence
(Seq2Seq) frameworks for TSF-HD. Our novel co-training system
jointly updates the encoder H(.) and regressor R(.) online.

The autoregressive AR-HDC framework (Figure 2, left)
predicts one time step ahead at a time. This prediction is
then used to make further predictions, as seen in Figure 2
when x̃t+1 is fed back - the system thus predicts x̃t+1 using
Xt−T+1:t, then predicts x̃t+2 using [Xt−T+2:t, x̃t+1], until
it predicts x̃t+τ using [Xt−T+τ+1:t, X̃t+1:t+τ−1]. Once the
prediction is complete, the system uses the true values of
the τ samples (xt+1 to xt+τ ) to update the model - model
updates are thus done periodically once new information is
known. AR-HDC then attempts to minimize the loss L by
updating the weights of its components (the regressor and
encoder), as in Figure 2. Unlike prior work, the regressor
and encoder are updated jointly online to minimize L.

In contrast, the Seq2Seq-HDC system (Figure 2, right) pre-
dicts the future sample values (from x̃t+1 to x̃t+τ ) in one
shot using the values of Xt−T+1:t, as seen in Fig. 2. This
is faster than the iterative prediction of AR-HDC, but may
not be as accurate. As seen in Figure 2, the true values
of the time points in the prediction horizon (ranging from
t+ 1 to t+ τ ) are then used to calculate the prediction loss
across the sequence and update the model, again updating
regressor and encoder jointly (co-training) to minimize L.

3.2.2. AUTOREGRESSIVE HDC (AR-HDC)

AR-HDC predicts one element ahead at a time, modeling
the time series as an autoregressive process. The classical
autoregressive predictor yields the predicted multivariate
sample x̃t+1 ∈ RN using a weighted average of past T (i.e,
the look back window value) samples Xt−T+1:t, yielding
x̃t+1 =

∑T
j=0 wj .xt−j+T .

For AR-HDC, the weighted average of xt−j+T of the previ-
ous equation is replaced with an hyperdimensional encoder
and regressor (rewriting Equation 4):

(x̃t+1)i =< Wr, (H(Xt−T+1:t))i > +br (5)

where < . > denotes the inner product operation, Wr ∈ RD

denotes the trainable regressor hypervector (described in
Section 3.1), (x̃t+1)i is the ith term of the predicted vec-
tor (1 ≤ i ≤ N), br is the regressor bias term and
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H(Xt−T+1:t)i denotes ith row of the encoded input se-
quence Xt−T+1:t. AR-HDC then adds x̃t+1 to its look-
back window and removes the last term from the lookback
window to predict xt+2 similarly, using the sample vector
[Xt−T+2:t, x̃t+1]. This is described in Algorithm 1.

Algorithm 1 Autoregressive HDC (AR-HDC)

1: X ← Xt−T+1:t = [xt−T+1, . . . , xt−1, xt]
2: for i = 1 to τ do
3: x̃t+i ← R(H(X))
4: X ← (X \ {xt−T+i}) ∪ {x̃t+i}
5: end for
6: for i = 1 to τ do
7: OGD(H,R,L(x̃t+i, xt+i)) ▷ Training Step
8: end for

The procedure for AR-HDC consists of two phases: a predic-
tion phase for τ future samples (from line 2 to line 5 of Al-
gorithm 1) and an online learning phase (from line 6 to line
8) to update the encoder and regressor once the true values
of Xt+1:t+τ are known. At line 3, AR-HDC employs the en-
coding H, followed by the regression function R, to predict
the ith future sample based on the past sequence X , which
is initialized in line 1 as the set of samples X = Xt−T+1:t.
In line 4, the first element xt−T+i (initially xt−T+1) of the
sequence X is removed, and the predicted sample x̃t+i is
appended. This updated sequence is then fed forward to
the encoder and regressor in line 2. This is repeated un-
til xt+τ is predicted from X = [Xt−T+τ+1:t, X̃t+1:t+τ−1].
Following the prediction phase, the system parameters (en-
coder weights and regression hypervectors) are updated
using online gradient descent as in Section 3.1. The over-
head of AR-HDC thus scales linearly with τ . For large τ , a
sequence-to-sequence predictor may thus be more practical.

3.2.3. SEQUENCE-TO-SEQUENCE HDC
(SEQ2SEQ-HDC)

The Seq2Seq-HDC algorithm is an efficient and straight-
forward algorithm for time series forecasting, where the
past T steps of the sequence are encoded into a D ≫ T -
dimensional hyperspace and a linear HDC regressor consist-
ing of a D × τ -dimensional regression matrix and trainable
bias br is used. The HDC encoder H is identical to that
of AR-HDC. The system begins by generating hypervector
encodings h = H(Xt−T+1:t), which are then used by the
regressor R(.):

X̃t+1:t+τ = R(h) = h.Wr + br (6)

Here, Xt−T+1..t ∈ RN×T is the input sequence of past
elements. It is encoded into an hyperdimensional structure
h ∈ RN×D using We and be as in Equation 1. Wr ∈
RD×τ is the HDC regression matrix for the output sequence

X̃t+1:t+τ ∈ RN×τ and br ∈ Rτ is the regression bias. This
process is further described in Algorithm 2.

Algorithm 2 Seq2Seq-HDC Algorithm

1: Initialization:
2: Xt−T+1..t ← [xt−T+1, . . . , xt−1, xt]
3: Forward Pass:
4: h← H(X)
5: X̃t..t+τ ← R(h)
6: Online Learning Phase:
7: OGD((H,R,L(Xt..t+τ , X̃t..t+τ ))) ▷ Training Step

In line 4 the input, consisting of T past elements Xt−T+1:t

are encoded into high dimensional vectors h ∈ RN×D

using the encoder H. In line 5, the hypervectors h are
forwarded to the regressor to generate the predicted τ future
points X̃t+1:t+τ using R(.). In the line 7, the actual values
Xt+1:t+τ are used to update the system weights (encoder
and all regressor matrices and biases) in order to minimize
the loss L(Xt+1:t+τ , X̃t+1:t+τ ) via online gradient descent.

4. Experiments
4.1. Experimental settings

4.1.1. DATASETS & METRICS

We empirically validate TSF-HD on eight real-world bench-
mark datasets (ETTh1 and ETTh2 (hourly electric trans-
former data), ETTm1 and ETTm2 (minute-by-minute elec-
tric transformer data), WTH (Weather forecasting), ECL
(hourly electricity consumption), Exchange (currency ex-
change rates) and ILI (Influenza-like illness occurrence)),
the details of which are in Appendix B.1. For short-term
Time Series Forecasting (TSF), all eight datasets were uti-
lized for evaluation. For long-term TSF, all datasets except
ETTh2 and ETTm2 were used. We also use a synthetic
abrupt dataset (called S-A), derived from (Pham et al., 2022),
to examine speed of adaptation to time series task shifts.
This univariate dataset (N = 1) contains abrupt and recur-
rent components, where samples switch between different
autoregressive (AR) processes.

To evaluate model precision we use the Root Relative
Squared Error (RSE) and Empirical Correlation Coefficient
(CORR) metrics, following (Lai et al., 2018). Details of
these metrics are available in Appendix B.2. To evaluate
model overhead and efficiency we record inference latency
in seconds and power use (on edge platforms) in watts (W).

4.1.2. MODEL BASELINES & IMPLEMENTATION SETUP

We compare TSF-HD to several online learning baselines
(FSNet (Pham et al., 2022), ER(Chaudhry et al., 2019),
DER++ (Buzzega et al., 2020), OnlineTCN (Woo et al.,
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Seq2Seq-HDC AR-HDC Fsnet ER DR++ OnlineTCN Informer
τ RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR
3 0.032 0.999 0.033 0.999 0.339 0.916 0.14 0.99 0.109 0.995 0.194 0.973 0.682 0.813
6 0.043 0.999 0.034 0.999 0.516 0.835 0.148 0.987 0.159 0.987 0.175 0.98 0.704 0.758Exchange

12 0.053 0.998 0.035 0.999 0.497 0.872 0.171 0.982 0.188 0.979 0.274 0.95 0.758 0.754
3 0.314 0.952 0.288 0.966 0.231 0.966 0.194 0.978 0.181 0.981 0.218 0.97 0.998 0.153
6 0.153 0.988 0.305 0.976 0.223 0.971 0.174 0.977 0.168 0.982 0.186 0.977 0.998 0.137ECL

12 0.106 0.995 0.121 0.994 0.218 0.979 0.137 0.992 0.136 0.992 0.146 0.991 0.999 0.046
3 0.142 0.989 0.128 0.994 0.155 0.993 0.141 0.993 0.136 0.994 0.164 0.992 0.751 0.838
6 0.162 0.987 0.177 0.991 0.191 0.989 0.158 0.991 0.154 0.991 0.191 0.986 0.757 0.835ETTh2

12 0.178 0.984 0.172 0.988 0.229 0.983 0.197 0.986 0.188 0.987 0.226 0.983 0.753 0.834
3 0.389 0.928 0.349 0.92 0.509 0.907 0.652 0.821 0.513 0.877 0.583 0.871 0.947 0.658
6 0.482 0.894 0.443 0.875 0.609 0.882 0.489 0.906 0.459 0.917 0.538 0.899 0.99 0.652ETTh1

12 0.371 0.938 0.448 0.902 0.727 0.843 0.533 0.896 0.521 0.899 0.597 0.878 1.005 0.646
3 0.111 0.994 0.11 0.994 0.198 0.987 0.351 0.914 0.563 0.821 0.621 0.892 0.501 0.887
6 0.135 0.991 0.148 0.99 0.223 0.985 0.335 0.954 0.299 0.952 0.353 0.911 0.506 0.884ETTm1

12 0.181 0.984 0.209 0.982 0.249 0.981 0.276 0.965 0.286 0.956 0.332 0.941 0.509 0.883
3 0.104 0.994 0.086 0.998 0.143 0.995 0.149 0.983 0.135 0.986 0.286 0.951 0.911 0.795
6 0.136 0.991 0.114 0.996 0.163 0.994 0.135 0.992 0.141 0.991 0.177 0.991 0.766 0.904ETTm2

12 0.161 0.987 0.171 0.993 0.155 0.992 0.162 0.992 0.148 0.992 0.174 0.991 0.781 0.901
3 0.671 0.784 0.642 0.797 0.719 0.811 0.694 0.817 0.682 0.819 0.719 0.809 0.58 0.831
6 0.712 0.773 0.674 0.785 0.757 0.807 0.708 0.819 0.697 0.822 0.732 0.812 0.612 0.811WTH

12 0.665 0.799 0.651 0.802 0.784 0.8 0.732 0.815 0.722 0.818 0.759 0.808 0.655 0.772
3 0.203 0.979 0.135 0.998 0.143 0.996 0.151 0.996 0.148 0.997 0.158 0.996 1.187 0.348
6 0.247 0.969 0.202 0.995 0.202 0.993 0.199 0.994 0.189 0.994 0.199 0.994 1.168 0.373ILI

12 0.296 0.956 0.297 0.989 0.248 0.989 0.268 0.987 0.328 0.985 0.279 0.987 1.066 0.337

Table 1. Short Term Time Series Forecasting Performance of AR-HDC & Seq2Seq-HDC compared to the baseline. We report the mean of
RSE and CORR of the experiments. The results in bold are the best and in blue and underlined are second best

2022)), transformers ( Informer (Zhou et al., 2021)), con-
volutional TSF models (SCINet (Liu et al., 2022)), linear
TSF models (NLinear (Zeng et al., 2023) ), a naive direct
multi-step that repeats the value of the look-back window
(Repeat) and Gradient Boosting Regression Trees (GBRT
(Friedman, 2001)). Further details of the baselines can be
found in Appendix C. For brevity, in the main body of the
paper we present the online learning and transformer base-
lines. TSF-HD sees similar effectiveness when compared to
the other baselines, as shown in Appendix D.

Similar to prior work (Pham et al., 2022), each time-series
forecasting scenario is split into: (1) A warmup phase where
the model learns from a small portion of the dataset without
measuring model performance, and (2) An online learning
phase where model predictions are evaluated and the model
parameters are updated using the ground truth data as it
is made available. In all scenarios, the trainable encoder
weight matrix We and bias be and the trainable regressor
hypervectors Wr and bias br are initially sampled from
the uniform distribution with the interval

[−1
T , 1

T

]
before

training begins. TSF-HD is trained periodically, predict-
ing the next τ samples and then updating model weights
when the system reveals those points, ensuring no overlap
between predictions. NLinear, GBRT, Informer and SCINet
are not meant to be trained online. Following (Pham et al.,
2022), we thus trained them only in the warm-up phase for
10 epochs. For these baselines, the training/validation set
proportion is 75:25. For the online learning baselines the
warm-up/online learning phase proportion is 25:75.

We fix the hypervector dimension at D = 1000. The look-

back window is fixed to twice the forecast horizon: T = 2τ .
For short term TSF, τ ∈ {3, 6, 12} and for the long term
TSF, τ ∈ {96, 192, 384} for all datasets except ILI where
τ ∈ {24, 36, 48} and Exchange where τ ∈ {96, 192, 224}.
The experiments are run five times with different random
seed values, with the mean RSE and CORR reported.

4.2. Performance Analysis

4.2.1. MODEL PRECISION

Table 1 shows the RSE and CORR for the two TSF-HD
frameworks (AR-HDC and Seq2Seq-HDC) compared to the
baselines. For short-term TSF, AR-HDC surpasses all state-
of-the-art (SOTA) models all 24 test cases with either lower
RSE and higher CORR. Seq2Seq-HDC shows comparable
performance, outshining SOTA models in 10 out of 24 test
cases, and is the top algorithm in 2 of these cases. We thus
see that for a majority of the test cases in short-term TSF,
TSF-HD frameworks outperform the state of the art.

Table 2 presents validation results for long-term TSF, com-
paring the TSF-HD frameworks to the state of the art. We
see that both TSF-HD frameworks perform better in com-
parison to the state of the art for the long-term as opposed
to the short-term TSF cases. AR-HD outperforms the base-
line models in either CORR or RSE in 16 out of 18 test
cases. Seq2Seq-HDC achieves the best results in 4 out of
18 cases for RSE and ranks second in 10 of the 18 cases.
Notably, AR-HDC demonstrates impressive performance
in the ETTh1, ETTm1, ILI, and WTH datasets for very
long forecast horizons (τ = 384). Due to the high value
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Seq2Seq-HDC AR-HDC Fsnet ER DR++ OnlineTCN Informer
τ RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR
96 0.601 0.846 0.568 0.84 1.073 0.722 0.864 0.778 0.871 0.778 0.897 0.763 1.397 0.629

192 0.678 0.803 0.599 0.827 1.353 0.626 1.089 0.696 1.066 0.703 1.118 0.675 1.455 0.627ETTh1
384 0.797 0.739 0.628 0.831 1.228 0.616 1.347 0.609 1.295 0.617 1.347 0.604 1.508 0.625
96 0.315 0.951 0.297 0.965 0.355 0.951 0.347 0.953 0.341 0.956 0.359 0.951 0.822 0.856

192 0.392 0.925 0.373 0.949 0.409 0.937 0.374 0.942 0.372 0.943 0.376 0.941 0.855 0.862ETTm1
384 0.465 0.893 0.431 0.924 0.522 0.915 0.454 0.926 0.448 0.927 0.476 0.925 0.841 0.859
24 0.288 0.957 0.229 0.986 0.304 0.967 0.382 0.936 0.357 0.947 0.411 0.932 1.09 0.211
36 0.391 0.92 0.199 0.99 0.389 0.945 0.454 0.931 0.489 0.926 0.477 0.927 1.122 0.221ILI
48 0.396 0.919 0.204 0.989 0.503 0.916 0.534 0.893 0.553 0.895 0.582 0.879 0.193 0.144
96 0.211 0.978 0.097 0.997 2.83 0.373 1.353 0.586 1.154 0.641 2.241 0.395 0.904 0.577

192 0.318 0.948 0.155 0.994 2.832 0.254 2.311 0.252 2.19 0.254 2.993 0.203 0.968 0.398Exchange
224 0.328 0.945 0.137 0.995 3.697 0.162 2.204 0.261 2.106 0.265 2.436 0.215 0.989 0.335
96 0.177 0.985 0.206 0.989 0.388 0.947 0.221 0.982 0.215 0.982 0.219 0.978 1 0.027

192 0.214 0.977 0.294 0.979 0.413 0.913 0.303 0.952 0.306 0.951 0.305 0.951 1 0.031ECL
384 0.282 0.962 0.302 0.979 0.517 0.861 0.504 0.866 0.484 0.866 0.521 0.857 1 0.077
96 0.697 0.793 0.633 0.796 0.886 0.766 0.807 0.787 0.798 0.789 0.838 0.782 0.841 0.567

192 0.723 0.784 0.632 0.791 0.911 0.753 0.854 0.771 0.845 0.772 0.926 0.759 0.895 0.549WTH
384 0.777 0.762 0.653 0.776 0.965 0.726 0.936 0.743 0.894 0.749 1.014 0.732 0.871 0.547

Table 2. Long Term Time Series Forecasting Performance of AR-HDC & Seq2Seq-HDC compared to the baseline. We report the mean of
RSE and CORR of the experiments. The results in bold are the best and in blue and underlined are second best

(a) Exchange (b) ETTm2 (c) ETTm1

Figure 3. Evolution of the cumulative RSE during online learning with forecasting window τ = 6

of D compared to τ , TSF-HD frameworks are thus able to
perform accurate hyperdimensional linear regression after
encoding the input data, leading to this high performance.

The high values of RSE seen for the baselines in Tables 1 and
2 (and for offline predictor data in Appendix D), particularly
for long-term TSF, indicate a collapse in performance com-
pared to a naive predictor. This is in part due to increased
values of τ and in part due to the fact that our experiments
use raw data without standardization or normalization, since
in an online learning scenario with shifting data streams we
do not know the mean and standard deviation of input data.

4.2.2. CONVERGENCE OF TSF-HD MODELS

Figure 3 shows the cumulative average RSE of the online
learning baselines for short-term TSF (τ = 6) compared to
AR-HDC and Seq2Seq-HDC on the Exchange, ETTm1 and
ETTm2 datasets.

We see that in the first 20% of the data (Exchange &
ETTm2), all models suffer from concept drift and attempt
to adapt to the shift in trend. The remainder of the data
appears stationary, as indicated by the relative convergence

of the RSE for all test cases. For all test cases, AR-HDC
outperforms all other models, achieving faster RSE conver-
gence (quicker adaptation to task shifts) and maintaining a
generally lower RSE value (efficient adaptation).

The Seq2Seq-HDC model’s RSE convergence follows a
similar trend to AR-HDC for ETTm1 and Exchange. For all
the test cases, the performance (i.e, speed of convergence
and asymptotic value) of AR-HDC and Seq2Seq-HDC are
comparable except for ETTm2, where Seq2Seq-HDC a has
lower final RSE value. In the ETTm1 case, OnlineTCN,
ER and DER++ are highly sensitive to shifts. These obser-
vations validate our framing of the TSF problem as one of
online linear hyperdimensional forecasting, using a trainable
mapping from low (input) dimensions to the hyperspace.

4.2.3. ADAPTATION TO TASK SHIFTS

To analyze the TSF-HD’s adaptation to task shifts in data
streams, we use the abrupt synthetic dataset S-A (Pham et al.,
2022), composed of different tasks concatenated together.
Thus, we begin by running warm-up training on a warm-up
autoregressive (AR) process in S-A for 1000 time steps.
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(a) 1st task shift zone (b) 2nd task shift zone (c) 3rd task shift zone (d) 4th task shift zone

Figure 4. Visualization of the baseline and TSF-HD method performance as the tasks shift between four different autoregressive processes.
Latency Power

τ AR-HDC Seq2Seq-HDC FSNet OnlineTCN AR-HDC Seq2Seq-HDC FSNet OnlineTCN
3 0.016±0.002 0.066±0.013 0.452±0.121 0.213±0.079 3.395±0.534 4.246±0.945 4.855±0.635 4.654±0.748

Exchange 96 0.937±0.347 0.073±0.041 0.538±0.227 0.273±0.093 5.257±0.511 4.437±0.855 4.975±0.642 4.788±0.804

3 0.0144±0.001 0.065±0.011 0.47±0.122 0.212±0.078 3.508±0.486 4.236±0.904 4.766±0.637 4.567±0.783

ETTh1 96 0.867±0.03 0.071±0.038 0.530±0.209 0.295±0.125 5.286±0.203 4.419±0.967 4.961±0.591 4.858±0.698

Table 3. Power consumption & latency of two online learning baselines and the TSF-HD model on RaspberryPI (mean±std)

Dimension 0.5k 1k 5k 10k

RSE
Seq2Seq-HDC ETTh2 0.971 0.756 0.164 0.143

ETTm2 0.849 0.349 0.179 0.178

AR-HDC ETTh2 0.059 0.059 0.059 0.058
ETTm2 0.047 0.049 0.052 0.053

Table 4. Effect of hypervector dimensionality reduction on the RSE
of ETTh2 & ETTm2 datasets TSF with τ = 96

Following that, we transition to a different AR process,
allow the models under evaluation to adapt for 200 time
steps, and then record their performance over the next 20
episodes before switching tasks again. Figure 4 shows the
predictions of different online learning models and TSF-
HD after conducting the described experiment. We begin
with the warmup process AR1 before switching to another
process AR2 (the results of which are shown in Fig. 4(a),
then AR1 again (Fig. 4(b), then AR2 again (Fig. 4(c), then
AR3 (Fig. 4(d)), a new process. Further details on each
autoregressive process are discussed in Appendix B.1. In
this experiment, we focused on short-term distribution shift
adaptation, with a forecast horizon of τ = 1. Both the AR-
HDC and Seq2Seq-HDC frameworks are identical for τ =
1, and are represented in Figure 4 as ‘TSF-HD’. The area
around each curve represents one standard deviation around
the mean value after repeating the experiment five times.
The baselines show more variation and error than TSF-HD,
indicating that the linearity of the nonlinear processes in
high dimensions enables fast adaptation.

4.2.4. ONLINE LEARNING POWER AND LATENCY
EFFICIENCY

We assessed the prediction latency and power usage of TSF-
HD and selected online learning baselines on two edge plat-
forms. Our findings for latency and power on two datasets
on a Raspberry Pi are detailed in Table 3. Similar results
are showcased for the NVIDIA Jetson Nano and for further
datasets on the Raspberry Pi in Appendix F. For short-term

TSF (τ = 3), AR-HDC demonstrates the lowest latency,
followed by Seq2Seq-HDC. Notably, both models maintain
a nearly constant latency with minimal standard deviation.
For long-term TSF, AR-HDC model falls short, exhibiting
the highest latency and reduced power efficiency. This is at-
tributed to its use of a loop for prediction and update phases,
updating the model τ ≫ 1 times during the update loop.
In contrast, Seq2Seq-HDC outperforms the others in both
inference latency and power efficiency.

4.2.5. EFFECT OF DIMENSIONALITY REDUCTION

Table 4 illustrates the influence of hypervector dimension D
on the Relative Squared Error (RSE) of both Seq2Seq-HDC
and AR-HDC models for the ETTh2 and ETTm2 datasets
with τ = 96. For Seq2Seq-HDC, the RSE decreases by 85%
and 79% for ETTh2 and ETTm2 respectively, as D ranges
from 500 to 10k, highlighting the advantages of operating in
a high-dimensional space. In contrast, an increase in D does
not yield similar benefits for AR-HDC due to the greater
data efficiency of the autoregressive formulation.

5. Conclusion
In this work, we present TSF-HD, a novel online variable-
horizon hyperdimensional time-series prediction framework.
By reframing the time-series prediction problem as task-free,
online hyperdimensional regression, we exploit the linearity
of the nonlinear time series in high dimensions, achieving
results superior to the state-of-the-art with higher efficiency.
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Impact Statement
This work provides low-overhead solution for edge-based
time-series forecasting, potentially enabling consumers and
end users to deploy a machine learning forecaster on cheap,
rugged hardware with reduced environmental impact from
power consumption. While we acknowledge the potential
harms from such work, we also note that this provides envi-
ronmental, economic and accessibility benefits.

One notable concern is the use of more efficient time-series
forecasting models for military applications or for uneth-
ical financial practices based on information asymmetry.
Mitigation strategies to address this may involve increased
oversight and monitoring.

Regarding fairness considerations, we believe that the more
explainable nature of the hyperdimensional linear regressor
allows more thorough research into its bias and fairness. We
also note that making sophisticated forecasting capabilities
available on cheap hardware and low power platforms con-
tributes to democratizing these capabilities and allowing
their use without the expense of complex hardware and high
energy use.
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Appendices

A. Trainable Encoder Validation: Problem Framing
The figure 5 illustrates the distance preservation of the HDC encoder of AR-HDC and Seq2Seq-HDC for a short term TSF
(τ = 6) across the Exchange, ETTh1 and the ETTm1 datasets. These readings are similar to the results shown in Figure
1a, with a linear relationship maintained between the distances ∥x− y∥ separating two points in the data stream (so that
x, y ∈ X ) and the encoded distances ∥H(x)−H(y)∥.

(a) Exchange (b) ETTh1 (c) ETTm1

Figure 5. Distance preservation across hyperdimensional mappings of input sequences H(x) for τ = 6

We see a similar observation from Figure 6 regarding distance preservation for long term TSF (τ = 96) on the same datasets.
However, we see greater dispersion of points and a greater variation in the linearity of the distance relationship, which may
be the cause of the drop in performance for longer horizon forecasting in TSF-HD.

(a) Exchange (b) ETTh1 (c) ETTm1

Figure 6. Distance preservation across hyperdimensional mappings of input sequences H(x) for τ = 96

Figure 7 shows the low average cosine similarity (≤ 0.03) between hypervectors of the encoder matrix We, illustrating
the orthogonality between H matrix components for short term forecasting horizon, τ = 6. This illustrates the fact that
each component of the encoder is mapping to a different component of the hyperspace, taking advantage of the high
dimensionality of the hyperspace compared to the input data.

Similar results are observed for hypervector orthogonality in long term TSF τ = 96 (see Figure 8). However, a similar trend
to that between Figures 5 and 6 is also seen, with a higher value of cosine similarity (while still low, at less than 0.05),
indicating less efficient use of data thanks to the higher dimensionality of the inputs (larger lookback window).

B. Datasets and Evaluation Metrics
B.1. Dataset Details

Details of the real-world benchmark datasets we used are below, with number of variables (dimension of each sample
vector), number of time-steps and granularity of sampling in Table 5:

• ETT(Zhou et al., 2021)1 The dataset is composed of two parts: ETTh, which includes hourly data, and ETTm, which

1https://github.com/zhouhaoyi/ETDataset
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(a) Exchange (b) ETTh1 (c) ETTm1

Figure 7. The mean cosine similarity between rows of the encoder matrix We of H(x) used to map low-dimensional input sequences to
the hyperdimensional space for τ = 6

(a) Exchange (b) ETTh1 (c) ETTm1

Figure 8. The mean cosine similarity between rows of the encoder matrix We of H(x) used to map low-dimensional input sequences to
the hyperdimensional space for τ = 96

Datasets ETTh1 & ETTh2 ETTm1 & ETTm2 ECL WTH Exchange ILI
Variates 7 7 321 12 8 7

Timesteps 17,420 69,680 26,304 52,696 7,588 966
Granularity 1hour 5min 1hour 10min 1day 1week

Table 5. The overall information of the 8 popular TSF Datasets

features data at 15-minute intervals. Each dataset provides information on seven different features related to oil and
load in electricity transformers. This data spans a period from July 2016 to July 2018.

• WTH2 The dataset encompasses 21 weather-related metrics, including air temperature and humidity, meticulously
recorded every 10 minutes throughout the year 2020 in Germany.

• Exchange3 collects the daily exchange rates of 8 countries from 1990 to 2016.

• ILI4 his dataset details the proportion of patients presenting with influenza-like illness compared to the total number of
patients seen. It comprises weekly records from the U.S. Centers for Disease Control and Prevention, spanning from
2002 to 2021

• ECL5 collects the hourly electricity consumption of 321 clients from 2012 to 2014.

We also use the Synthetic-Abrupt univariate time series S-A dataset, drawing from (Pham et al., 2022). It is a concatenation
of first-order auto-regressive processes ARφ(σ) defined as

Xt = φXt−1 + ϵt, (7)

2https://www.bgc-jena.mpg.de/wetter/
3https://github.com/laiguokun/multivariate-time-series-data
4https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
5https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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Figure 9. Overview of Synthetic Abrupt time series (S-A)

where ϵt is zero-mean Gaussian noise with variance σ. The first term X0 is randomly generated from a zero-mean Gaussian
distribution. The S-Abrupt dataset is generated with different processes acting at different time intervals, as described by the
following equation:

Xt =



AR1 = AR0.7(0.1) if 1 < t ≤ 1000

AR3 = AR0.5(0.4) if 1000 < t ≤ 1999

AR2 = AR0.9(0.8) if 2000 < t ≤ 2999

AR1 = AR0.7(0.1) if 3000 < t ≤ 3999

AR2 = AR0.9(0.8) if 4000 < t ≤ 4999

AR3 = AR0.5(0.4) if 5000 < t ≤ 5999.

(8)

The S-A implementation in this paper is different from the one proposed in (Pham et al., 2022), as we have changed the
variance of ϵt in each of the AR processes to accentuate the severity of the task shifts (concept drift) in the time series.
Earlier work (Pham et al., 2022) retained identical noise variance for all AR processes.

Figure 9 illustrates the S-A dataset over time with a color associated to each AR process. It begins with a warmup process
AR1 followed by AR2, AR1 again, AR2 again and AR3, to evaluate forecaster adaptation to task shifts and recurrence of
old tasks. Figure 4 of Section 4.2.3 illustrates concept drift adaptation for TSF-HD (main body of the paper) across this
dataset. Section 4.2.3 skips the performance analysis for the first appearance of AR3 for brevity, but we run the online
learning systems across the entire dataset shown in Figure 9. We allow online learning to occur for the first 200 of the 1000
timesteps of each process, followed by comparing predictions and learning online to state of the art for the next 20 time
steps (following the setup of (Pham et al., 2022)).

B.2. Metrics

The metrics used to evaluate forecaster accuracy are CORR (Empirical Correlation Coefficient) (Lai et al., 2018) and RSE
(Relative Root Squared Error) (Lai et al., 2018) detailed here:

RSE(X̃,X) =

√∑τ
i=0(x̃i − xi)2√∑τ
i=0(xi − X̄)2

(9)

CORR(X̃,X) =
1

d

d∑
j=0

∑τ
i=0(xi,j − X̄j)(x̃i,j − ¯̃Xj)∑τ

i=0(xi,j − X̄j)2(x̃i,j − ¯̃Xj)2
(10)

in the RSE and CORR equations, x̃ and x refer respectively to the predicted sample and the ground truth sample. ¯̃X refers
to the mean of the entire predicted sequence while X̄ refers to the mean of the entire ground truth sequence. For RSE, a
lower value indicates a lower average squared error when compared to the naive forecaster (forecasting all values as the
sequence mean), and thus indicates better accuracy. For CORR, the correlation coefficient ranges from 0 to 1 and indicates
how well-correlated the forecaster predictions are with the data stream - a higher value indicates more correlated predictions
(better precision).
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C. Baselines
Seq2Seq-HDC AR-HDC SCINet Nlinear Naive GBRT

τ RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR
3 0.032 0.999 0.033 0.999 0.053 0.999 0.017 0.999 0.011 0.999 0.018 0.999
6 0.043 0.999 0.034 0.999 0.052 0.999 0.021 0.999 0.017 0.999 0.021 0.999Exchange

12 0.053 0.998 0.035 0.999 0.05 0.999 0.028 0.999 0.023 0.999 0.027 0.999
3 0.314 0.952 0.288 0.966 0.129 0.902 0.331 0.945 0.329 0.945 0.381 0.925
6 0.153 0.988 0.305 0.976 0.154 0.875 0.503 0.873 0.493 0.879 0.47 0.882ECL

12 0.106 0.994 0.121 0.994 0.144 0.866 0.732 0.731 0.733 0.739 0.596 0.809
3 0.142 0.989 0.128 0.994 0.179 0.984 0.124 0.992 0.125 0.992 0.134 0.991
6 0.162 0.987 0.177 0.991 0.209 0.982 0.147 0.989 0.174 0.985 0.167 0.986ETTh2

12 0.178 0.984 0.172 0.988 0.21 0.978 0.169 0.985 0.234 0.973 0.207 0.978
3 0.389 0.928 0.349 0.92 0.406 0.916 0.396 0.917 0.562 0.842 0.623 0.785
6 0.482 0.894 0.443 0.875 0.468 0.885 0.47 0.882 0.892 0.609 0.817 0.592ETTh1

12 0.371 0.938 0.448 0.902 0.53 0.86 0.517 0.855 1.227 0.289 1.011 0.362
3 0.111 0.994 0.11 0.994 0.302 0.957 0.253 0.968 0.267 0.964 0.422 0.914
6 0.135 0.991 0.148 0.99 0.411 0.916 0.338 0.943 0.363 0.934 0.484 0.879ETTm1

12 0.181 0.984 0.209 0.982 0.517 0.86 0.503 0.874 0.538 0.854 0.609 0.793
3 0.104 0.994 0.086 0.998 0.162 0.989 0.081 0.996 0.087 0.996 0.102 0.994
6 0.136 0.991 0.114 0.996 0.134 0.991 0.097 0.995 0.103 0.995 0.113 0.993ETTm2

12 0.161 0.987 0.171 0.993 0.174 0.984 0.121 0.992 0.127 0.992 0.133 0.991
3 0.671 0.784 0.642 0.797 0.636 0.78 0.724 0.737 0.711 0.742 0.596 0.803
6 0.712 0.773 0.674 0.785 0.647 0.773 0.797 0.68 0.788 0.681 0.65 0.763WTH

12 0.665 0.799 0.651 0.802 0.645 0.77 0.854 0.633 0.834 0.635 0.68 0.737
3 0.203 0.979 0.135 0.998 0.23 0.983 0.118 0.993 0.103 0.996 0.093 0.996
6 0.247 0.969 0.202 0.995 0.364 0.948 0.153 0.988 0.169 0.99 0.155 0.991ILI

12 0.296 0.956 0.297 0.989 0.383 0.953 0.196 0.981 0.252 0.982 0.236 0.985

Table 6. Short Term Time Series Forecasting Performance of AR-HDC & Seq2Seq-HDC compared to other offline baselines. We report
the mean of RSE and CORR of the experiments. The results in bold are the best and in blue and underlined are second best

The details of the baselines we have evaluated TSF-HD against are shown below:

• OnlineTCN6 uses a standard TCN backbone (Woo et al., 2022) with 10 hidden layers, each of which has two stacks of
residual convolution filters.

• ER6 (Chaudhry et al., 2019) ER enhances OnlineTCN by adding episodic memory to mix old and new learning
samples.

• DER++6(Buzzega et al., 2020) augments the standard ER with a ℓ2 knowledge distillation loss on the previous logits.

• FSNet6 (Pham et al., 2022) or Fast and Slow learning Network is an online learning technique combining rapid
adaptation to new data and memory recall of past events.

• Informer7 (Zhou et al., 2021) is a transformer-based model employing self-attention for efficiency and a generative
decoder for accurate predictions.

• SCINet8(Liu et al., 2022) is an architecture that enhances TSF by recursively downsampling and convolving data to
extract complex temporal features.

• NLinear9 It enhances LTSF-Linear’s (Zeng et al., 2023) performance on shifting datasets by normalizing inputs
through subtraction and addition around a linear layer.

• Naive9 is a naive direct multi-step which repeats the last value in the look-back window.

• GBRT9 is the classical Gradient Boosting Regression Trees algorithm (Friedman, 2001).

The online learning and transformer baselines’ evaluation against TSFHD are shown in Section 4.2.1, while the results of
the offline learning and classical algorithms’ comparison to TSF-HD are shown in Appendix D.

6https://github.com/salesforce/fsnet
7https://github.com/zhouhaoyi/Informer2020
8https://github.com/cure-lab/SCINet
9https://github.com/cure-lab/LTSF-Linear
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Seq2Seq-HDC AR-HDC SCINet Nlinear Naive GBRT
tau RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR RSE CORR
96 0.601 0.846 0.568 0.84 0.698 0.753 0.643 0.7739 1.208 0.273 1.01 0.347
192 0.678 0.803 0.599 0.827 0.763 0.7 0.671 0.752 1.226 0.255 1.02 0.328ETTh1
384 0.797 0.739 0.628 0.831 0.864 0.66 0.687 0.735 1.239 0.247 1.03 0.321
96 0.315 0.951 0.297 0.965 0.585 0.817 0.587 0.813 1.127 0.345 0.985 0.405
192 0.392 0.925 0.373 0.949 0.672 0.767 0.658 0.762 1.143 0.323 1.01 0.375ETTm1
384 0.465 0.893 0.431 0.924 1.064 0.602 0.731 0.698 1.166 0.296 1.033 0.343
24 0.288 0.957 0.229 0.986 0.382 0.934 0.173 0.985 0.304 0.98 0.277 0.983
36 0.398 0.918 0.199 0.99 0.42 0.969 0.176 0.985 0.334 0.981 0.307 0.984ILI
48 0.448 0.901 0.204 0.989 0.481 0.965 0.185 0.984 0.33 0.968 0.303 0.972
96 0.211 0.978 0.097 0.997 0.092 0.996 0.062 0.998 0.062 0.998 0.062 0.998
192 0.318 0.948 0.155 0.994 0.159 0.989 0.089 0.996 0.088 0.996 0.088 0.996Exchange
224 0.328 0.945 0.137 0.995 0.17 0.987 0.096 0.996 0.091 0.996 0.09 0.996
96 0.177 0.985 0.206 0.989 0.364 0.933 0.726 0.736 0.722 0.735 0.571 0.823
192 0.214 0.977 0.294 0.979 0.551 0.857 0.731 0.733 0.721 0.736 0.572 0.822ECL
384 0.282 0.962 0.302 0.979 0.796 0.631 0.737 0.729 0.729 0.732 0.581 0.817
96 0.697 0.793 0.633 0.796 0.651 0.767 0.898 0.593 0.915 0.585 0.746 0.687
192 0.723 0.784 0.632 0.791 0.691 0.744 0.906 0.856 0.925 0.575 0.756 0.678WTH
384 0.777 0.762 0.653 0.776 0.777 0.692 0.579 0.916 0.938 0.566 0.767 0.669

Table 7. Long Term Time Series Forecasting Performance of AR-HDC & Seq2Seq-HDC compared to the offline baseline. We report the
mean of RSE and CORR of the experiments. The results in bold are the best and in blue and underlined are second best

D. Additional results
In Table 6 we compare Seq2Seq-HDC and AR-HDC to convolutional, linear, naive and gradient boosting approaches for
short term TSF. Aside from the Exchange Rate dataset, where the naive and the linear models slightly outperform our
techniques (a similar observation is seen in (Zeng et al., 2023)), TSF-HD (either AR-HDC or Seq2Seq-HDC) outperforms
all offline methods in either the CORR or RSE metrics.

In Table 7, AR-HDC outperforms all offline baselines across most test cases, once again with the exception of the Exchange
dataset. In this specific case, the Linear model (NLinear (Zeng et al., 2023)) and the naive approach prove to be more
precise than other techniques. This outcome aligns with previous results where the same baseline surpassed our models in
short-term TSF, and aligns with prior work.

For the majority of test cases, AR-HDC demonstrates superior performance over Seq2Seq-HDC. Notably, AR-HDC,
having fewer parameters, tends to converge more rapidly than Seq2Seq-HDC, particularly for long-term TSF. This faster
convergence is likely due to underfitting, especially when there are fewer learning steps (i.e., the number of times the
samples are presented) in long-term TSF, as the time series samples should not overlap and TSF-HD is trained periodically
on the samples it predicted up to the forecast horizon - the larger the horizon, the less frequently TSF-HD models are trained.

In contrast to the linear model (NLinear) which projects the T -dimensional input space into a τ -dimensional prediction space,
AR-HDC and Seq2Seq-HDC first project the T -dimensional space into an hyperspace of D-dimension (D ≫ max(T, τ))
then project it back to the τ -dimensional space. This operation extracts further information from the time series and better
retains information about old tasks, allowing better precision for almost all the short term and long term TSF cases save for
Exchange.

AR-HDC Seq2Seq-HDC FSNet ER DER++ OnlineTCN
3 0.073±0.018 0.037±0.021 0.356±0.099 0.364±0.031 0.365±0.036 0.169±0.079

ECL 96 5.233±0.669 0.0828±0.041 1.44±0.277 1.791±0.061 1.791±0.065 0.991±0.097

3 0.0144±0.001 0.065±0.011 0.47±0.122 0.33±0.024 0.335±0.023 0.212±0.078

ETTh1 96 0.867±0.03 0.071±0.038 0.530±0.209 0.696±0.375 0.697±0.399 0.295±0.125

3 0.016±0.002 0.066±0.013 0.452±0.121 0.334±0.024 0.337±0.025 0.213±0.079

Exchange 96 0.937±0.347 0.073±0.041 0.538±0.227 0.702±0.036 0.701±0.039 0.273±0.093

3 0.015±0.003 0.069±0.004 0.329±0.09 0.304±0.035 0.305±0.308 0.149±0.082

WTH 96 1.171±0.654 0.082±0.038 0.678±0.316 0.730±0.043 0.723±0.046 0.305±0.117

Table 8. Latency of Online learning models on RaspberryPI (mean±std)
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AR-HDC Seq2Seq-HDC FSNet ER DER++ OnlineTCN
3 4.715±0.976 4.153±0.932 4.827±0.742 4.881±0.746 4.914±0.739 4.471±0.817

ECL 96 5.548±0.506 4.762±0.816 4.923±0.582 5.07±0.646 5.077±0.649 4.914±0.552

3 3.508±0.486 4.236±0.904 4.766±0.637 4.833±0.795 4.906±0.788 4.567±0.783

ETTh1 96 5.286±0.203 4.419±0.967 4.961±0.591 5.194±0.753 5.247±0.743 4.858±0.698

3 3.395±0.534 4.246±0.945 4.855±0.635 4.974±0.761 4.982±0.732 4.654±0.748

Exchange 96 5.257±0.511 4.437±0.855 4.975±0.642 5.244±0.732 5.259±0.742 4.788±0.804

3 3.457±0.469 3.971±1.122 4.752±0.788 4.903±0.791 4.804±0.901 4.338±0.919

WTH 96 5.272±0.429 4.450±0.87 4.931±0.679 5.255±0.716 5.208±0.768 4.818±0.725

Table 9. Power consumption of Online learning models on RaspberryPI (mean±std)

AR-HDC Seq2Seq-HDC FSNet ER DER++ OnlineTCN
3 0.035±0.008 0.018±0.008 0.637±1.638 0.229±0.662 0.286±1.167 0.193±0.847

ECL 96 1.024±0.074 0.022±0.02 0.662±1.403 0.403±1.384 0.409±1.524 0.295±1.456

3 0.051±0.187 0.031±0.151 0.627±1.341 0.283±1.194 0.239±0.731 0.182±0.702

ETTh1 96 0.923±0.043 0.018±0.008 0.688±1.897 0.264±0.919 0.242±0.695 0.178±0.749

3 0.036±0.025 0.02±0.017 0.644±1.408 0.231±0.641 0.235±0.628 0.166±0.621

Exchange 96 0.938±0.065 0.021±0.017 0.622±1.209 0.238±0.608 0.241±0.649 0.169±0.642

3 0.035±0.024 0.017±0.010 0.631±1.214 0.235±0.703 0.233±0.666 0.176±0.706

WTH 96 0.927±0.049 0.017±0.007 0.661±1.66 0.244±0.697 0.249±0.701 0.176±0.676

Table 10. Latency of Online learning models on Nvidia Jetson Nano(mean±std)

E. Hardware Setup
To evaluate the precision of TSF-HD and compare it against the baselines (as in Section 4.2.1 and Appendix D), we trained
our models (AR-HD & Seq2Seq-HD) on an Nvidia RTX 3050 with 4GB of RAM. The baseline models except for GBRT
(Friedman, 2001) were trained on an Nvidia RTX A2000 with 12GB of RAM. GBRT (Friedman, 2001) was trained on a
CPU 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz.

To evaluate the inference latency and power overhead of TSF-HD in comparison to the baselines, we conducted measurements
on a RaspberryPi4 (Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz) and on an Nvidia-Jetson Nano with 4 GB
of RAM. The power usage of the RaspberryPi4 was measured with a USB Powermeter placed between the board and the
Power Supply Unit (PSU). For the Nvidia-Jetson the power was measured internally using the python library Jtop. We
note that some baselines such as Informer (Zhou et al., 2021) are unable to fit on a Raspberry Pi and therefore were not
considered for inference latency and power measurement.

F. Latency and Power Results
Our complete findings for latency and power on a Raspberry Pi are detailed in Table 8 (latency) and Table 9 (power) for
four different datasets and two different values of τ representing short and long-term forecast horizons, comparing the two
TSF-HD models with our online learning baselines. For short-term TSF (τ = 3), AR-HDC demonstrates the lowest latency,
followed by Seq2Seq-HDC. Notably, both models maintain a nearly constant latency with minimal standard deviation.
For long-term TSF, AR-HDC falls short, exhibiting the highest latency and reduced power efficiency. This is attributed
to its use of a loop for prediction and update phases, updating the model τ ≫ 1 times during the update loop. In contrast,
Seq2Seq-HDC outperforms the others in both inference latency and power efficiency thanks to its use of one-shot prediction.
Seq2Seq-HDC is seen to be faster than baseline models and AR-HDC on edge GPUs for both short and long-term TSF. On
edge CPUs, AR-HDC is faster and more power-efficient the other models, but only for short-term forecasting scenarios.

Tables 10 and 11 present similar results, comparing latency and power consumption of AR-HDC and Seq2Seq-HDC with
the online learning baselines over four datasets and two values of τ for short- and long-term TSF on an Nvidia Jetson Nano
edge GPU. Unlike the ARM CPU of the Raspberry Pi, the edge GPU is better suited for parallel computing, enabling
faster matrix computations. This advantage is evident as Seq2Seq-HDC outpaces AR-HDC in short-term TSF as well as
long-term TSF on this platform. From a power consumption standpoint, AR-HDC and Seq2Seq-HDC rank as the most
and second-most efficient models, respectively, except in the Exchange dataset for short-term forecasting (where Online
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AR-HDC Seq2Seq-HDC FSNet ER DER++ OnlineTCN
3 3.58±0.257 3.296±0.164 4.021±0.465 3.362±0.121 3.344±0.097 3.363±0.264

ECL 96 5.501±0.501 3.755±0.429 4.141±0.397 5.222±0.526 5.17±0.519 5.047±0.378

3 3.184±0.109 3.3±0.017 4.188±0.303 3.318±0.129 3.234±0.056 3.302±0.211

ETTh1 96 3.523±0.086 3.393±0.287 4.234±0.316 4.307±0.621 4.688±0.524 3.636±0.179

3 3.395±0.211 3.532±0.142 4.04±0.3 3.417±0.126 3.487±0.29 3.262±0.134

Exchange 96 3.539±0.089 3.706±0.318 4.289±0.351 4.474±0.596 4.337±0.449 3.73±0.043

3 3.157±0.02 3.118±0.125 4.148±0.309 3.298±0.06 3.362±0.155 3.288±0.114

WTH 96 3.536±0.088 3.502±0.406 4.265±0.291 4.394±0.545 4.243±0.423 3.451±0.099

Table 11. Power consumption of Online learning models on Nvidia Jetson Nano (mean±std)

TCN is the second most power-efficient) and Weather dataset for long-term forecasting (where OnlineTCN is the most
power-efficient). To summarize, the Seq2Seq-HDC model proves more efficient than baseline models and AR-HDC on
edge GPUs for both short and long-term TSF. Conversely, on edge CPUs, AR-HDC demonstrates lower overhead than
Seq2Seq-HDC and other baseline models, but only in short-term forecasting scenarios.

G. Reproducibility Details
The experiments are performed using 5 different random seed values, which are 2019, 2020, 2021, 2022 and 2023. The
learning rate used are summarized in the table 12. We note that the experiments can be replicated using the provided GitHub
repository.

Exchange ECL ETTh1 ETTh2 ETTm1 ETTm2 WTH ILI
Seq2Seq-HDC 1e-3 2e-5 1e-4 1e-4 1e-4 1e-4 1e-4 1e-3

AR-HDC 1e-4 4e-5 5e-5 5e-5 5e-5 5e-5 4e-4 1e-3

Table 12. Learning rate parameter values
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