Compare commits
13 Commits
9f1dbffc2a
...
feat/nauti
| Author | SHA1 | Date | |
|---|---|---|---|
| 45f6e4da1c | |||
| 9281ad0da8 | |||
| 6d12eb9497 | |||
| ba220f2380 | |||
| fde38cbef1 | |||
| 4748a7ba62 | |||
| 4d8ec0ddc6 | |||
| 2902dd0791 | |||
| af0bfbe100 | |||
| c9cffb4b53 | |||
| 0f9a4a6f9c | |||
| 8b59e0ed4e | |||
| b5cd68263c |
1399
SILOQY_DOLPHIN_Integration_Engineering_Spect_1.0.md
Normal file
1399
SILOQY_DOLPHIN_Integration_Engineering_Spect_1.0.md
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,4 +1,5 @@
|
||||
import time
|
||||
import sys
|
||||
import numpy as np
|
||||
import asyncio
|
||||
import json
|
||||
@@ -9,6 +10,7 @@ from typing import Dict, List, Optional, Tuple, Any
|
||||
from enum import Enum
|
||||
from collections import deque
|
||||
import random # Added for _simulate_websocket_ticks
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
# Nautilus imports - following test pattern
|
||||
from nautilus_trader.config import TradingNodeConfig, ImportableActorConfig
|
||||
@@ -35,6 +37,12 @@ STRUCTURED_TOPIC = "SILOQY.STRUCTURED.TICKS"
|
||||
REGIME_TOPIC = "DOLPHIN.REGIME.RESULTS"
|
||||
SYMBOLS_DISCOVERED_TOPIC = "SILOQY.SYMBOLS.DISCOVERED"
|
||||
CANDLES_INITIAL_TOPIC = "SILOQY.CANDLES.INITIAL"
|
||||
# ADDED LINE 18:
|
||||
TICK_SIZES_TOPIC = "SILOQY.TICK.SIZES"
|
||||
# NEW: Enhanced indicator topics for data bus publishing
|
||||
REGIME_INDICATORS_TOPIC = "DOLPHIN.REGIME.INDICATORS"
|
||||
BB_METRICS_TOPIC = "DOLPHIN.BB.METRICS"
|
||||
TEMPORAL_PATTERNS_TOPIC = "DOLPHIN.TEMPORAL.PATTERNS"
|
||||
|
||||
# Rate limiting constant
|
||||
MIN_INTERVAL = 2.5 # seconds between API batches
|
||||
@@ -333,7 +341,7 @@ class SILOQYMainActorConfig(ActorConfig):
|
||||
|
||||
class DOLPHINRegimeActorConfig(ActorConfig):
|
||||
max_symbols: int = 5000
|
||||
ticks_per_analysis: int = 1000
|
||||
ticks_per_analysis: int = 10
|
||||
|
||||
class SILOQYNormalizerConfig(ActorConfig):
|
||||
pass
|
||||
@@ -350,6 +358,7 @@ class SILOQYSymbolDiscoveryActor(Actor):
|
||||
self.symbols = list(config.symbols) if config.symbols else []
|
||||
self.candle_interval_ms = config.candle_interval_ms
|
||||
self.active_candles = {}
|
||||
self.tick_sizes = {}
|
||||
|
||||
# Process management configuration
|
||||
self.throttle_mode = config.throttle_mode
|
||||
@@ -409,17 +418,83 @@ class SILOQYSymbolDiscoveryActor(Actor):
|
||||
self.log.info("Starting dynamic symbol discovery from Binance...")
|
||||
url = "https://api.binance.com/api/v3/exchangeInfo"
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
# RATE LIMIT CHECK - Before anything else
|
||||
self.log.info("Checking Binance API rate limit status...")
|
||||
time_check_url = "https://api.binance.com/api/v3/time"
|
||||
|
||||
try:
|
||||
rate_check_response = await client.get(time_check_url, timeout=5)
|
||||
|
||||
if rate_check_response.status_code == 200:
|
||||
# Parse rate limit headers
|
||||
headers = rate_check_response.headers
|
||||
used_weight = headers.get('X-MBX-USED-WEIGHT-1M', 'Unknown')
|
||||
server_time = rate_check_response.json().get('serverTime', 'Unknown')
|
||||
|
||||
self.log.info(f"Rate limit check passed - Used weight: {used_weight}/1200, Server time: {server_time}")
|
||||
|
||||
# Check if we're close to rate limit
|
||||
if used_weight != 'Unknown' and int(used_weight) > 1000:
|
||||
self.log.warning(f"HIGH RATE LIMIT USAGE: {used_weight}/1200 - Proceeding with caution")
|
||||
|
||||
elif rate_check_response.status_code == 429:
|
||||
retry_after = rate_check_response.headers.get('Retry-After', '60')
|
||||
self.log.error(f"RATE LIMITED: Must wait {retry_after} seconds before API calls")
|
||||
raise Exception(f"Binance API rate limited - retry after {retry_after}s")
|
||||
|
||||
elif rate_check_response.status_code == 418:
|
||||
self.log.error("IP BANNED: This IP address has been auto-banned by Binance")
|
||||
raise Exception("IP address banned by Binance - cannot proceed")
|
||||
|
||||
else:
|
||||
self.log.warning(f"Rate limit check returned status {rate_check_response.status_code}")
|
||||
self.log.warning("Proceeding anyway, but may encounter issues")
|
||||
|
||||
except Exception as e:
|
||||
if "rate limited" in str(e).lower() or "banned" in str(e).lower():
|
||||
raise # Re-raise rate limit/ban errors
|
||||
else:
|
||||
self.log.warning(f"Rate limit check failed: {e}")
|
||||
self.log.warning("Proceeding with symbol discovery anyway")
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
self.log.info("Fetching exchange info from Binance API...")
|
||||
response = await client.get(url, timeout=10)
|
||||
if response.status_code == 200:
|
||||
self.log.info("Successfully received exchange info")
|
||||
data = response.json()
|
||||
# Get all trading symbols (USDT pairs for example)
|
||||
full_symbols = [
|
||||
s['symbol'] for s in data['symbols']
|
||||
if s['status'] == 'TRADING' and s['symbol'].endswith('USDT')
|
||||
]
|
||||
|
||||
# Combined symbol discovery and tick size extraction
|
||||
self.log.info("Processing symbols and extracting tick sizes...")
|
||||
full_symbols = []
|
||||
for symbol_info in data['symbols']:
|
||||
if symbol_info['status'] == 'TRADING' and symbol_info['symbol'].endswith('USDT'):
|
||||
symbol = symbol_info['symbol']
|
||||
full_symbols.append(symbol)
|
||||
|
||||
# Extract tick size while processing # Extract tick size while processing
|
||||
tick_size = None
|
||||
for filter_info in symbol_info['filters']:
|
||||
if filter_info['filterType'] == 'PRICE_FILTER':
|
||||
tick_size = float(filter_info['tickSize'])
|
||||
break
|
||||
|
||||
# If no PRICE_FILTER found, try other filter types
|
||||
if tick_size is None:
|
||||
for filter_info in symbol_info['filters']:
|
||||
if filter_info['filterType'] == 'TICK_SIZE':
|
||||
tick_size = float(filter_info['tickSize'])
|
||||
break
|
||||
|
||||
# Fallback to default if still not found
|
||||
if tick_size is None:
|
||||
tick_size = 1e-8 # Default fallback
|
||||
self.log.warning(f"No tick size found for {symbol}, using fallback {tick_size}")
|
||||
|
||||
self.tick_sizes[symbol] = tick_size
|
||||
|
||||
self.log.info(f"Processed {len(full_symbols)} symbols, extracted {len(self.tick_sizes)} tick sizes")
|
||||
|
||||
# Apply throttle mode symbol limiting
|
||||
if self.throttle_mode:
|
||||
@@ -573,8 +648,10 @@ class SILOQYSymbolDiscoveryActor(Actor):
|
||||
# Publish symbols and candles as tuples
|
||||
self.msgbus.publish(SYMBOLS_DISCOVERED_TOPIC, (self.symbols, int(time.time_ns())))
|
||||
self.msgbus.publish(CANDLES_INITIAL_TOPIC, (self.active_candles, int(time.time_ns())))
|
||||
self.msgbus.publish(TICK_SIZES_TOPIC, (self.tick_sizes, int(time.time_ns())))
|
||||
|
||||
self.log.info(f"Nautilus ActorExecutor: Published {len(self.symbols)} symbols and {len(self.active_candles)} candles")
|
||||
self.log.info(f"Nautilus ActorExecutor: Published {len(self.tick_sizes)} tick sizes")
|
||||
self.log.info("Nautilus ActorExecutor: Discovery phase complete - other actors can now start processing")
|
||||
else:
|
||||
self.log.warning("Nautilus ActorExecutor: msgbus not available for publishing")
|
||||
@@ -851,6 +928,8 @@ class SILOQYMainActor(Actor):
|
||||
|
||||
except Exception as e:
|
||||
self.log.error(f"Nautilus ActorExecutor: Failed to publish tick: {e}")
|
||||
self.log.error(f"{tick_tuple}")
|
||||
sys.exit(2)
|
||||
|
||||
class DOLPHINRegimeActor(Actor):
|
||||
def __init__(self, config: DOLPHINRegimeActorConfig):
|
||||
@@ -867,6 +946,7 @@ class DOLPHINRegimeActor(Actor):
|
||||
self.low_prices = np.zeros(self.max_symbols, dtype=np.float64)
|
||||
self.volumes = np.zeros(self.max_symbols, dtype=np.float64)
|
||||
self.last_update = np.zeros(self.max_symbols, dtype=np.int64)
|
||||
self.tick_sizes = np.full(self.max_symbols, 1e-8, dtype=np.float64) # Default fallback
|
||||
|
||||
# PRESERVED: All original mapping and state
|
||||
self.symbol_to_idx = {}
|
||||
@@ -887,25 +967,76 @@ class DOLPHINRegimeActor(Actor):
|
||||
self.processed_ticks = 0
|
||||
self.regime_calculations = 0
|
||||
|
||||
# NEW: Enhanced indicator tracking for BB and temporal patterns
|
||||
self.signal_history = deque(maxlen=100) # For BB calculations
|
||||
self.bb_period = 20 # BB calculation period
|
||||
self.bb_std_dev = 2.0 # BB standard deviation multiplier
|
||||
self.velocity_history = deque(maxlen=10) # For regime velocity tracking
|
||||
self.confidence_history = deque(maxlen=20) # For confidence trend analysis
|
||||
|
||||
self.log.info(f"DOLPHINRegimeActor initialized with Nautilus ActorExecutor - max_symbols: {self.max_symbols}, "
|
||||
f"ticks_per_analysis: {self.ticks_per_analysis}")
|
||||
|
||||
def on_start(self) -> None:
|
||||
"""Subscribe to tick events - using Nautilus ActorExecutor"""
|
||||
self.log.info("Nautilus ActorExecutor: DOLPHINRegimeActor starting - subscribing to tick events")
|
||||
self.log.info("Nautilus ActorExecutor: DOLPHINRegimeActor starting - subscribing to events")
|
||||
|
||||
if hasattr(self, 'msgbus') and self.msgbus:
|
||||
self.msgbus.subscribe(RAW_TOPIC, self.handle_raw_tick)
|
||||
self.log.info("Nautilus ActorExecutor: Subscribed to raw tick events")
|
||||
self.msgbus.subscribe(SYMBOLS_DISCOVERED_TOPIC, self.handle_symbols_discovered)
|
||||
self.msgbus.subscribe(TICK_SIZES_TOPIC, self.handle_tick_sizes)
|
||||
self.log.info("Nautilus ActorExecutor: Subscribed to raw tick events, symbol discovery and tick sizes")
|
||||
|
||||
def on_stop(self) -> None:
|
||||
"""Stop the actor - Nautilus handles executor cleanup"""
|
||||
self.log.info("Nautilus ActorExecutor: DOLPHINRegimeActor stopping")
|
||||
# Nautilus kernel handles executor shutdown - no manual cleanup needed
|
||||
|
||||
def handle_symbols_discovered(self, data):
|
||||
"""Pre-initialize symbol mappings during discovery phase"""
|
||||
try:
|
||||
symbols, timestamp = data
|
||||
self.log.info(f"Nautilus ActorExecutor: Pre-initializing {len(symbols)} symbol mappings")
|
||||
|
||||
for symbol in symbols:
|
||||
if self.active_symbols >= self.max_symbols:
|
||||
self.log.warning(f"Max symbols ({self.max_symbols}) exceeded during initialization")
|
||||
break
|
||||
|
||||
idx = self.active_symbols
|
||||
self.symbol_to_idx[symbol] = idx
|
||||
self.idx_to_symbol[idx] = symbol
|
||||
self.active_symbols += 1
|
||||
|
||||
self.log.info(f"Pre-initialized {self.active_symbols} symbol mappings")
|
||||
|
||||
except Exception as e:
|
||||
self.log.error(f"Error pre-initializing symbols: {e}")
|
||||
|
||||
def handle_tick_sizes(self, data):
|
||||
"""Apply tick sizes to pre-initialized symbol mappings"""
|
||||
try:
|
||||
tick_sizes, timestamp = data
|
||||
self.log.info(f"Nautilus ActorExecutor: Received {len(tick_sizes)} tick sizes from discovery actor")
|
||||
|
||||
applied_count = 0
|
||||
for symbol, tick_size in tick_sizes.items():
|
||||
if symbol in self.symbol_to_idx: # Will exist from pre-initialization
|
||||
idx = self.symbol_to_idx[symbol]
|
||||
if 0 < tick_size <= 1.0:
|
||||
self.tick_sizes[idx] = tick_size
|
||||
applied_count += 1
|
||||
else:
|
||||
self.log.warning(f"Invalid tick size {tick_size} for {symbol}, using fallback")
|
||||
|
||||
self.log.info(f"Nautilus ActorExecutor: Applied {applied_count} tick sizes to pre-initialized symbols")
|
||||
|
||||
except Exception as e:
|
||||
self.log.error(f"Nautilus ActorExecutor: Error handling tick sizes: {e}")
|
||||
|
||||
def handle_raw_tick(self, data):
|
||||
"""
|
||||
PRESERVED EXACTLY: All original zero-allocation tick processing
|
||||
SIMPLIFIED: Zero-allocation tick processing with pre-initialized symbols
|
||||
Using Nautilus ActorExecutor for regime detection tasks
|
||||
"""
|
||||
try:
|
||||
@@ -915,24 +1046,11 @@ class DOLPHINRegimeActor(Actor):
|
||||
self.log.error(f"Nautilus ActorExecutor: Malformed tick data: {e}")
|
||||
return
|
||||
|
||||
# PRESERVED EXACTLY: All original array processing logic
|
||||
# Direct lookup - symbol will exist from pre-initialization
|
||||
if symbol not in self.symbol_to_idx:
|
||||
if self.active_symbols >= self.max_symbols:
|
||||
self.log.error(f"Nautilus ActorExecutor: Max symbols ({self.max_symbols}) exceeded")
|
||||
self.log.error(f"Nautilus ActorExecutor: Symbol {symbol} not found in pre-initialized mappings")
|
||||
return
|
||||
|
||||
idx = self.active_symbols
|
||||
self.symbol_to_idx[symbol] = idx
|
||||
self.idx_to_symbol[idx] = symbol
|
||||
self.active_symbols += 1
|
||||
|
||||
# Initialize arrays
|
||||
self.open_prices[idx] = open_price
|
||||
self.high_prices[idx] = price
|
||||
self.low_prices[idx] = price
|
||||
self.close_prices[idx] = price
|
||||
self.volumes[idx] = 0.0
|
||||
else:
|
||||
idx = self.symbol_to_idx[symbol]
|
||||
|
||||
# Check if new candle period
|
||||
@@ -977,6 +1095,101 @@ class DOLPHINRegimeActor(Actor):
|
||||
except Exception as e:
|
||||
self.log.error(f"Nautilus ActorExecutor: Regime detection error: {e}")
|
||||
|
||||
def _calculate_enhanced_indicators(self, bull_ratio, bear_ratio, confidence, analyzed, total_symbols):
|
||||
"""NEW: Calculate enhanced indicators including BB metrics and temporal patterns"""
|
||||
# Calculate regime momentum signal
|
||||
base_momentum = (bull_ratio - bear_ratio) * 100 # -100 to +100
|
||||
sample_quality = min(analyzed / total_symbols, 1.0) if total_symbols > 0 else 0.0
|
||||
signal = base_momentum * confidence * sample_quality
|
||||
|
||||
# Add to signal history
|
||||
self.signal_history.append(signal)
|
||||
|
||||
# Calculate velocity (rate of change in signal)
|
||||
velocity = 0.0
|
||||
if len(self.signal_history) >= 2:
|
||||
velocity = self.signal_history[-1] - self.signal_history[-2]
|
||||
self.velocity_history.append(velocity)
|
||||
|
||||
# Store confidence for trending
|
||||
self.confidence_history.append(confidence)
|
||||
|
||||
# Calculate Bollinger Bands if enough history
|
||||
bb_metrics = {}
|
||||
if len(self.signal_history) >= self.bb_period:
|
||||
recent_signals = list(self.signal_history)[-self.bb_period:]
|
||||
sma = sum(recent_signals) / len(recent_signals)
|
||||
|
||||
# Calculate standard deviation
|
||||
variance = sum((x - sma) ** 2 for x in recent_signals) / len(recent_signals)
|
||||
std_dev = variance ** 0.5
|
||||
|
||||
upper_band = sma + (self.bb_std_dev * std_dev)
|
||||
lower_band = sma - (self.bb_std_dev * std_dev)
|
||||
|
||||
# Position within BBs (mean reversion interpretation)
|
||||
if signal > upper_band:
|
||||
bb_position = 'ABOVE_UPPER'
|
||||
elif signal < lower_band:
|
||||
bb_position = 'BELOW_LOWER'
|
||||
elif signal >= sma:
|
||||
bb_position = 'UPPER_HALF'
|
||||
else:
|
||||
bb_position = 'LOWER_HALF'
|
||||
|
||||
# Momentum persistence interpretation
|
||||
if signal > upper_band:
|
||||
momentum_signal = 'STRONG_BULL_BREAKOUT'
|
||||
elif signal < lower_band:
|
||||
momentum_signal = 'STRONG_BEAR_BREAKOUT'
|
||||
elif signal > sma:
|
||||
momentum_signal = 'MILD_BULLISH'
|
||||
else:
|
||||
momentum_signal = 'MILD_BEARISH'
|
||||
|
||||
bb_metrics = {
|
||||
'signal': signal,
|
||||
'sma': sma,
|
||||
'upper_band': upper_band,
|
||||
'lower_band': lower_band,
|
||||
'bb_position': bb_position,
|
||||
'momentum_signal': momentum_signal,
|
||||
'bb_ready': True
|
||||
}
|
||||
else:
|
||||
bb_metrics = {
|
||||
'signal': signal,
|
||||
'sma': None,
|
||||
'upper_band': None,
|
||||
'lower_band': None,
|
||||
'bb_position': 'INSUFFICIENT_DATA',
|
||||
'momentum_signal': 'INSUFFICIENT_DATA',
|
||||
'bb_ready': False
|
||||
}
|
||||
|
||||
# Calculate temporal patterns
|
||||
temporal_metrics = {}
|
||||
if len(self.velocity_history) >= 3:
|
||||
avg_velocity = sum(self.velocity_history) / len(self.velocity_history)
|
||||
velocity_trend = 'ACCELERATING' if velocity > avg_velocity else 'DECELERATING'
|
||||
else:
|
||||
avg_velocity = velocity
|
||||
velocity_trend = 'BUILDING_HISTORY'
|
||||
|
||||
if len(self.confidence_history) >= 5:
|
||||
confidence_trend = 'RISING' if confidence > sum(self.confidence_history[-5:-1])/4 else 'FALLING'
|
||||
else:
|
||||
confidence_trend = 'BUILDING_HISTORY'
|
||||
|
||||
temporal_metrics = {
|
||||
'velocity': velocity,
|
||||
'avg_velocity': avg_velocity,
|
||||
'velocity_trend': velocity_trend,
|
||||
'confidence_trend': confidence_trend
|
||||
}
|
||||
|
||||
return bb_metrics, temporal_metrics
|
||||
|
||||
def _run_regime_detection(self):
|
||||
self.regime_calculations += 1
|
||||
|
||||
@@ -988,6 +1201,9 @@ class DOLPHINRegimeActor(Actor):
|
||||
bullish = 0
|
||||
bearish = 0
|
||||
|
||||
# NEW: Track pattern of bullish/bearish symbols for this calculation
|
||||
symbol_pattern = []
|
||||
|
||||
# PRESERVED: Original analysis with exact thresholds
|
||||
for idx in range(self.active_symbols):
|
||||
open_price = self.open_prices[idx]
|
||||
@@ -998,13 +1214,26 @@ class DOLPHINRegimeActor(Actor):
|
||||
|
||||
analyzed += 1
|
||||
|
||||
# PRESERVED: EXACT DOLPHIN thresholds
|
||||
change = (close_price - open_price) / open_price
|
||||
|
||||
if change >= 0.0015: # 0.15% threshold for bullish
|
||||
# NEW: HFT-grade tick-size based comparison
|
||||
tick_size = self.tick_sizes[idx]
|
||||
equality_threshold = tick_size / 2 # Half tick size standard
|
||||
price_diff = abs(close_price - open_price)
|
||||
|
||||
# Check if prices are effectively equal within tick size tolerance
|
||||
if price_diff <= equality_threshold:
|
||||
# Prices are effectively equal (within tick size tolerance)
|
||||
symbol_pattern.append(f"S{close_price:.8f}={open_price:.8f}")
|
||||
elif close_price > open_price:
|
||||
# Bullish: close > open
|
||||
bullish += 1
|
||||
elif change <= -0.0015: # -0.15% threshold for bearish
|
||||
# Arrow points to close (larger price)
|
||||
symbol_pattern.append(f"B{open_price:.8f}->{close_price:.8f}")
|
||||
else:
|
||||
# Bearish: close < open
|
||||
bearish += 1
|
||||
# Arrow points to open (larger price)
|
||||
symbol_pattern.append(f"X{close_price:.8f}<-{open_price:.8f}")
|
||||
|
||||
if analyzed == 0:
|
||||
return
|
||||
@@ -1026,6 +1255,11 @@ class DOLPHINRegimeActor(Actor):
|
||||
# PRESERVED: Original confidence calculation
|
||||
confidence = self._calculate_confidence(bull_ratio, bear_ratio, analyzed, total_symbols)
|
||||
|
||||
# NEW: Calculate enhanced indicators
|
||||
bb_metrics, temporal_metrics = self._calculate_enhanced_indicators(
|
||||
bull_ratio, bear_ratio, confidence, analyzed, total_symbols
|
||||
)
|
||||
|
||||
self.previous_bull_ratio = bull_ratio
|
||||
|
||||
# Publish regime result using Nautilus message bus
|
||||
@@ -1044,20 +1278,87 @@ class DOLPHINRegimeActor(Actor):
|
||||
|
||||
self.msgbus.publish(REGIME_TOPIC, regime_tuple)
|
||||
|
||||
# NEW: Publish enhanced indicators to data bus
|
||||
indicator_data = {
|
||||
'timestamp': int(time.time() * 1000),
|
||||
'regime_momentum_signal': bb_metrics['signal'],
|
||||
'bb_ready': bb_metrics['bb_ready'],
|
||||
'velocity': temporal_metrics['velocity'],
|
||||
'velocity_trend': temporal_metrics['velocity_trend'],
|
||||
'confidence_trend': temporal_metrics['confidence_trend']
|
||||
}
|
||||
self.msgbus.publish(REGIME_INDICATORS_TOPIC, indicator_data)
|
||||
|
||||
# Publish BB metrics separately for specialized consumers
|
||||
if bb_metrics['bb_ready']:
|
||||
bb_data = {
|
||||
'timestamp': int(time.time() * 1000),
|
||||
'signal': bb_metrics['signal'],
|
||||
'sma': bb_metrics['sma'],
|
||||
'upper_band': bb_metrics['upper_band'],
|
||||
'lower_band': bb_metrics['lower_band'],
|
||||
'bb_position': bb_metrics['bb_position'],
|
||||
'momentum_signal': bb_metrics['momentum_signal']
|
||||
}
|
||||
self.msgbus.publish(BB_METRICS_TOPIC, bb_data)
|
||||
|
||||
# Publish temporal patterns
|
||||
temporal_data = {
|
||||
'timestamp': int(time.time() * 1000),
|
||||
'velocity': temporal_metrics['velocity'],
|
||||
'avg_velocity': temporal_metrics['avg_velocity'],
|
||||
'velocity_trend': temporal_metrics['velocity_trend'],
|
||||
'confidence_trend': temporal_metrics['confidence_trend'],
|
||||
'signal_history_length': len(self.signal_history)
|
||||
}
|
||||
self.msgbus.publish(TEMPORAL_PATTERNS_TOPIC, temporal_data)
|
||||
|
||||
except Exception as e:
|
||||
self.log.error(f"Nautilus ActorExecutor: Failed to publish regime result: {e}")
|
||||
|
||||
# Log regime changes
|
||||
if not self.regime_history or regime != self.regime_history[-1]:
|
||||
self.log.info(f"REGIME CHANGE: {regime.value} | Bull: {bull_ratio:.1%} "
|
||||
f"Bear: {bear_ratio:.1%} Sideways: {sideways_ratio:.1%} | "
|
||||
f"Confidence: {confidence:.1%} | Analyzed: {analyzed}/{total_symbols}")
|
||||
self.log.info(f"REGIME CHANGE: {regime.value} | Bull: {bull_ratio:.2%} "
|
||||
f"Bear: {bear_ratio:.2%} Sideways: {sideways_ratio:.2%} ({bullish}/{bearish}) | "
|
||||
f"Confidence: {confidence:.2%} | Analyzed: {analyzed}/{total_symbols}")
|
||||
self.regime_history.append(regime)
|
||||
|
||||
# Periodic regime status (even without changes)
|
||||
if self.regime_calculations % 10 == 0: # Every 10 calculations
|
||||
self.log.info(f"REGIME STATUS: {regime.value} | Bull: {bull_ratio:.1%} "
|
||||
f"Bear: {bear_ratio:.1%} | Processed: {self.processed_ticks} ticks")
|
||||
if self.regime_calculations % 50 == 0: # Every second, approx, given avg. tick rate
|
||||
# Determine color based on regime
|
||||
if regime == MarketRegime.BULL:
|
||||
color_code = "\033[92m" # Green
|
||||
elif regime == MarketRegime.BEAR:
|
||||
color_code = "\033[91m" # Red
|
||||
else: # SIDEWAYS
|
||||
color_code = "\033[93m" # Yellow
|
||||
|
||||
# Reset color code
|
||||
reset_code = "\033[0m"
|
||||
|
||||
self.log.info(f"{color_code}REGIME STATUS: {regime.value} | Bull: {bull_ratio:.2%} "
|
||||
f"Bear: {bear_ratio:.2%} ({bullish}/{bearish}) | Processed: {self.processed_ticks} ticks{reset_code}")
|
||||
|
||||
# NEW: Enhanced indicator line after regime status
|
||||
if bb_metrics['bb_ready']:
|
||||
self.log.info(f"{color_code}INDICATORS: Signal:{bb_metrics['signal']:.1f} | "
|
||||
f"SMA:{bb_metrics['sma']:.1f} | Upper:{bb_metrics['upper_band']:.1f} | "
|
||||
f"Lower:{bb_metrics['lower_band']:.1f} | Pos:{bb_metrics['bb_position']} | "
|
||||
f"Mom:{bb_metrics['momentum_signal']} | Vel:{temporal_metrics['velocity']:.1f} | "
|
||||
f"VelTrend:{temporal_metrics['velocity_trend']} | ConfTrend:{temporal_metrics['confidence_trend']}{reset_code}")
|
||||
else:
|
||||
self.log.info(f"{color_code}INDICATORS: Signal:{bb_metrics['signal']:.1f} | "
|
||||
f"Status:BUILDING_BB_HISTORY ({len(self.signal_history)}/{self.bb_period}) | "
|
||||
f"Vel:{temporal_metrics['velocity']:.1f} | VelTrend:{temporal_metrics['velocity_trend']} | "
|
||||
f"ConfTrend:{temporal_metrics['confidence_trend']}{reset_code}")
|
||||
|
||||
# NEW: Log symbol pattern and counts
|
||||
if symbol_pattern: # Only if we have symbols to show
|
||||
pattern_str = " ".join(symbol_pattern) + " " # Create pattern with spaces
|
||||
bull_count = sum(1 for s in symbol_pattern if s.startswith("B"))
|
||||
bear_count = sum(1 for s in symbol_pattern if s.startswith("X"))
|
||||
|
||||
self.log.debug(f"{pattern_str} and totals: BULLS:{bull_count}/BEARS:{bear_count}")
|
||||
|
||||
def _calculate_confidence(self, bull_ratio: float, bear_ratio: float,
|
||||
analyzed: int, total: int) -> float:
|
||||
@@ -1172,7 +1473,7 @@ def test_siloqy_actors_with_nautilus_process_management():
|
||||
"candle_interval_ms": 15 * 60 * 1000,
|
||||
"throttle_mode": True, # ENABLED: Safe for dual instance testing
|
||||
"throttle_rate_limit_seconds": 10.0, # 10s between batches (vs 2.5s)
|
||||
"max_symbols_throttled": 100 # Only 100 symbols (vs 2000+)
|
||||
"max_symbols_throttled": 414 # Only 100 symbols (vs 2000+)
|
||||
}
|
||||
)
|
||||
|
||||
@@ -1182,8 +1483,8 @@ def test_siloqy_actors_with_nautilus_process_management():
|
||||
config={
|
||||
"component_id": "SILOQY-MAIN-ACTOR",
|
||||
"candle_interval_ms": 15 * 60 * 1000,
|
||||
"throttle_mode": True, # ENABLED: Reduced tick generation
|
||||
"enable_real_data": False # CHANGE TO True for real WebSocket data
|
||||
"throttle_mode": False, # ENABLED: Reduced tick generation
|
||||
"enable_real_data": True # CHANGE TO True for real WebSocket data
|
||||
}
|
||||
)
|
||||
|
||||
@@ -1193,7 +1494,7 @@ def test_siloqy_actors_with_nautilus_process_management():
|
||||
config={
|
||||
"component_id": "DOLPHIN-REGIME-ACTOR",
|
||||
"max_symbols": 5000,
|
||||
"ticks_per_analysis": 500 # Reduced for throttle mode testing
|
||||
"ticks_per_analysis": 2 # Reduced for throttle mode testing
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
1549
nautilus_actor_test_implementation_6x.py
Normal file
1549
nautilus_actor_test_implementation_6x.py
Normal file
File diff suppressed because it is too large
Load Diff
24
symbol_consideration_issue.md
Normal file
24
symbol_consideration_issue.md
Normal file
@@ -0,0 +1,24 @@
|
||||
2025-09-01T19:54:58.150165200Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: REGIME STATUS: BULL | Bull: 75.0% Bear: 25.0% | Processed: 1374 ticks
|
||||
2025-09-01T19:54:58.150201100Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: X109215.45000000<-109263.08000000 B2.77130000->2.77360000 B848.60000000->848.90000000 X109.33000000<-109.44000000 B4366.20000000->4368.36000000 B0.18580000->0.18610000 B6.48700000->6.49300000 B0.81120000->0.81150000 and totals: BULLS:6/BEARS:2
|
||||
2025-09-01T19:54:58.660990300Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: Nautilus ActorExecutor: DOLPHIN metrics - ticks: 1375, regime_calcs: 687, active_symbols: 8
|
||||
2025-09-01T19:54:58.661042700Z [INFO] TRADER-000.SILOQY-NORMALIZER: Nautilus ActorExecutor: Normalizer processed: 1375 ticks
|
||||
2025-09-01T19:54:58.730072100Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: REGIME STATUS: BULL | Bull: 75.0% Bear: 25.0% | Processed: 1376 ticks
|
||||
2025-09-01T19:54:58.730093900Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: X109215.45000000<-109263.08000000 B2.77130000->2.77360000 B848.60000000->848.90000000 X109.33000000<-109.44000000 B4366.20000000->4368.36000000 B0.18580000->0.18610000 B6.48700000->6.49300000 B0.81120000->0.81150000 and totals: BULLS:6/BEARS:2
|
||||
2025-09-01T19:54:59.455057400Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: REGIME STATUS: BULL | Bull: 75.0% Bear: 25.0% | Processed: 1378 ticks
|
||||
2025-09-01T19:54:59.455081700Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: X109215.45000000<-109263.08000000 B2.77130000->2.77350000 B848.60000000->848.90000000 X109.33000000<-109.44000000 B4366.20000000->4368.36000000 B0.18580000->0.18610000 B6.48700000->6.49300000 B0.81120000->0.81150000 and totals: BULLS:6/BEARS:2
|
||||
2025-09-01T19:54:59.568990700Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: REGIME STATUS: BULL | Bull: 77.8% Bear: 22.2% | Processed: 1380 ticks
|
||||
2025-09-01T19:54:59.569016900Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: X109215.45000000<-109263.08000000 B2.77130000->2.77350000 B848.60000000->848.90000000 X109.33000000<-109.44000000 B4366.20000000->4368.36000000 B0.18580000->0.18610000 B6.48700000->6.49300000 B0.81120000->0.81150000 B2.58800000->2.59000000 and totals: BULLS:7/BEARS:2
|
||||
2025-09-01T19:54:59.666864100Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: Nautilus ActorExecutor: DOLPHIN metrics - ticks: 1381, regime_calcs: 690, active_symbols: 9
|
||||
2025-09-01T19:54:59.666902500Z [INFO] TRADER-000.SILOQY-NORMALIZER: Nautilus ActorExecutor: Normalizer processed: 1381 ticks
|
||||
2025-09-01T19:54:59.726017700Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: REGIME STATUS: BULL | Bull: 77.8% Bear: 22.2% | Processed: 1382 ticks
|
||||
2025-09-01T19:54:59.726051700Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: X109215.44000000<-109263.08000000 B2.77130000->2.77350000 B848.60000000->848.90000000 X109.33000000<-109.44000000 B4366.20000000->4368.36000000 B0.18580000->0.18610000 B6.48700000->6.49300000 B0.81120000->0.81150000 B2.58800000->2.59000000 and totals: BULLS:7/BEARS:2
|
||||
2025-09-01T19:54:59.999524400Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: REGIME STATUS: BULL | Bull: 77.8% Bear: 22.2% | Processed: 1384 ticks
|
||||
2025-09-01T19:54:59.999567100Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: X109215.44000000<-109263.08000000 B2.77130000->2.77350000 B848.60000000->848.90000000 X109.33000000<-109.44000000 B4366.20000000->4368.36000000 B0.18580000->0.18610000 B6.48700000->6.49300000 B0.81120000->0.81150000 B2.58800000->2.59000000 and totals: BULLS:7/BEARS:2
|
||||
2025-09-01T19:54:59.999803000Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: REGIME STATUS: BULL | Bull: 77.8% Bear: 22.2% | Processed: 1386 ticks
|
||||
2025-09-01T19:54:59.999815800Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: X109215.44000000<-109263.08000000 B2.77130000->2.77350000 B848.60000000->848.90000000 X109.33000000<-109.44000000 B4366.20000000->4368.36000000 B0.18580000->0.18610000 B6.48700000->6.49300000 B0.81120000->0.81150000 B2.58800000->2.59000000 and totals: BULLS:7/BEARS:2
|
||||
2025-09-01T19:55:00.683433300Z [INFO] TRADER-000.DOLPHIN-REGIME-ACTOR: REGIME STATUS: BULL | Bull: 77.8% Bear: 22.2% | Processed: 1388 ticks
|
||||
|
||||
In this log, at the "transition" between 75.x% and 77.x% you will find one of the symbols being considered in the DOLPHIN market-regime detection is missing totals go from 6/2 to 7/2 ...
|
||||
... so *one less symbol* is being considered.-
|
||||
|
||||
Most likely *no tick has been produced for that symbols* (is this a correct assumption?).-
|
||||
Reference in New Issue
Block a user