Compare commits

...

1 Commits

2 changed files with 229 additions and 18 deletions

View File

@@ -1,4 +1,5 @@
import time
import sys
import numpy as np
import asyncio
import json
@@ -927,6 +928,8 @@ class SILOQYMainActor(Actor):
except Exception as e:
self.log.error(f"Nautilus ActorExecutor: Failed to publish tick: {e}")
self.log.error(f"{tick_tuple}")
sys.exit(2)
class DOLPHINRegimeActor(Actor):
def __init__(self, config: DOLPHINRegimeActorConfig):

View File

@@ -39,6 +39,11 @@ CANDLES_INITIAL_TOPIC = "SILOQY.CANDLES.INITIAL"
# ADDED LINE 18:
TICK_SIZES_TOPIC = "SILOQY.TICK.SIZES"
# NEW: Enhanced BB indicator topics for tuple-based publishing
REGIME_INDICATORS_TOPIC = "DOLPHIN.REGIME.INDICATORS"
BB_METRICS_TOPIC = "DOLPHIN.BB.METRICS"
TEMPORAL_PATTERNS_TOPIC = "DOLPHIN.TEMPORAL.PATTERNS"
# Rate limiting constant
MIN_INTERVAL = 2.5 # seconds between API batches
@@ -53,6 +58,16 @@ class MarketRegime(Enum):
# EXTRACTED FROM STANDALONE: REAL WEBSOCKET INFRASTRUCTURE
# ============================================================================
#TODO TODO: Manually added. Left for *future* re-integration of class instead of tuples (where appropriate)
class SILOQYQuoteTick(Data):
def __init__(self, instrument_id, price, size, ts_event, ts_init=None):
super().__init__()
self.instrument_id = str(instrument_id)
self.price = float(price)
self.size = float(size)
self.ts_event = int(ts_event)
self.ts_init = int(ts_init if ts_init is not None else time.time_ns())
@dataclass
class TickData:
"""Universal tick data structure from standalone"""
@@ -868,21 +883,20 @@ class SILOQYMainActor(Actor):
# PRESERVED: Original high-performance tuple publishing
try:
if hasattr(self, 'msgbus') and self.msgbus:
# STEP 3 FIX: Round all float values to 8 decimals in the tuple
tick_tuple = (
symbol,
round(float(price), 8),
round(float(quantity), 8),
str(symbol),
float(price),
float(quantity),
int(timestamp),
round(float(candle['open_price']), 8),
float(candle['open_price']),
int(candle['open_time'])
)
self.msgbus.publish(RAW_TOPIC, tick_tuple)
except Exception as e:
self.log.error(f"Nautilus ActorExecutor: Failed to publish tick: {e}")
self.log.error(f"Nautilus ActorExecutor: Faish tick: {e}")
print(f"EXCEPTION DETAILS: {type(e)} - {e}")
class DOLPHINRegimeActor(Actor):
def __init__(self, config: DOLPHINRegimeActorConfig):
@@ -920,6 +934,13 @@ class DOLPHINRegimeActor(Actor):
self.processed_ticks = 0
self.regime_calculations = 0
# NEW: Enhanced indicator tracking for BB and temporal patterns
self.signal_history = deque(maxlen=100) # For BB calculations
self.bb_period = 20 # BB calculation period
self.bb_std_dev = 2.0 # BB standard deviation multiplier
self.velocity_history = deque(maxlen=10) # For regime velocity tracking
self.confidence_history = deque(maxlen=20) # For confidence trend analysis
self.log.info(f"DOLPHINRegimeActor initialized with Nautilus ActorExecutor - max_symbols: {self.max_symbols}, "
f"ticks_per_analysis: {self.ticks_per_analysis}")
@@ -1041,6 +1062,132 @@ class DOLPHINRegimeActor(Actor):
except Exception as e:
self.log.error(f"Nautilus ActorExecutor: Regime detection error: {e}")
def _calculate_enhanced_indicators(self, bull_ratio, bear_ratio, confidence, analyzed, total_symbols):
"""NEW: Calculate enhanced indicators including BB metrics and temporal patterns"""
# Initialize history attributes if they don't exist
if not hasattr(self, 'signal_history'):
self.signal_history = deque(maxlen=50)
if not hasattr(self, 'velocity_history'):
self.velocity_history = deque(maxlen=50)
if not hasattr(self, 'confidence_history'):
self.confidence_history = deque(maxlen=50)
if not hasattr(self, 'bb_period'):
self.bb_period = 20
if not hasattr(self, 'bb_std_dev'):
self.bb_std_dev = 2.0
# Calculate regime momentum signal
base_momentum = (bull_ratio - bear_ratio) * 100 # -100 to +100
sample_quality = min(analyzed / total_symbols, 1.0) if total_symbols > 0 else 0.0
signal = base_momentum * confidence * sample_quality
# Add to signal history
self.signal_history.append(signal)
# Calculate velocity (rate of change in signal)
velocity = 0.0
if len(self.signal_history) >= 2:
velocity = self.signal_history[-1] - self.signal_history[-2]
self.velocity_history.append(velocity)
# Store confidence for trending
self.confidence_history.append(confidence)
# Calculate Bollinger Bands if enough history
bb_metrics = {}
if len(self.signal_history) >= self.bb_period:
# REPLACE SLICE: recent_signals = list(self.signal_history)[-self.bb_period:]
recent_signals = []
start_index = len(self.signal_history) - self.bb_period
for i in range(start_index, len(self.signal_history)):
recent_signals.append(self.signal_history[i])
sma = sum(recent_signals) / len(recent_signals)
# Calculate standard deviation
variance = sum((x - sma) ** 2 for x in recent_signals) / len(recent_signals)
std_dev = variance ** 0.5
upper_band = sma + (self.bb_std_dev * std_dev)
lower_band = sma - (self.bb_std_dev * std_dev)
# Position within BBs (mean reversion interpretation)
if signal > upper_band:
bb_position = 'ABOVE_UPPER'
elif signal < lower_band:
bb_position = 'BELOW_LOWER'
elif signal >= sma:
bb_position = 'UPPER_HALF'
else:
bb_position = 'LOWER_HALF'
# Momentum persistence interpretation
if signal > upper_band:
momentum_signal = 'STRONG_BULL_BREAKOUT'
elif signal < lower_band:
momentum_signal = 'STRONG_BEAR_BREAKOUT'
elif signal > sma:
momentum_signal = 'MILD_BULLISH'
else:
momentum_signal = 'MILD_BEARISH'
bb_metrics = {
'signal': signal,
'sma': sma,
'upper_band': upper_band,
'lower_band': lower_band,
'bb_position': bb_position,
'momentum_signal': momentum_signal,
'bb_ready': True
}
else:
bb_metrics = {
'signal': signal,
'sma': None,
'upper_band': None,
'lower_band': None,
'bb_position': 'INSUFFICIENT_DATA',
'momentum_signal': 'INSUFFICIENT_DATA',
'bb_ready': False
}
# Calculate temporal patterns
temporal_metrics = {}
if len(self.velocity_history) >= 3:
avg_velocity = sum(self.velocity_history) / len(self.velocity_history)
velocity_trend = 'ACCELERATING' if velocity > avg_velocity else 'DECELERATING'
else:
avg_velocity = velocity
velocity_trend = 'BUILDING_HISTORY'
if len(self.confidence_history) >= 5:
# REPLACE SLICE: confidence > sum(self.confidence_history[-5:-1])/4
confidence_sum = 0.0
count = 0
start_index = len(self.confidence_history) - 5
end_index = len(self.confidence_history) - 1 # exclude last element
for i in range(start_index, end_index):
confidence_sum += self.confidence_history[i]
count += 1
if count > 0:
confidence_avg = confidence_sum / count
confidence_trend = 'RISING' if confidence > confidence_avg else 'FALLING'
else:
confidence_trend = 'BUILDING_HISTORY'
else:
confidence_trend = 'BUILDING_HISTORY'
temporal_metrics = {
'velocity': velocity,
'avg_velocity': avg_velocity,
'velocity_trend': velocity_trend,
'confidence_trend': confidence_trend
}
return bb_metrics, temporal_metrics
def _run_regime_detection(self):
self.regime_calculations += 1
@@ -1065,7 +1212,6 @@ class DOLPHINRegimeActor(Actor):
analyzed += 1
# NEW: HFT-grade tick-size based comparison
tick_size = self.tick_sizes[idx]
equality_threshold = tick_size / 2 # Half tick size standard
@@ -1127,6 +1273,54 @@ class DOLPHINRegimeActor(Actor):
except Exception as e:
self.log.error(f"Nautilus ActorExecutor: Failed to publish regime result: {e}")
# NEW: Calculate enhanced indicators
bb_metrics, temporal_metrics = self._calculate_enhanced_indicators(
bull_ratio, bear_ratio, confidence, analyzed, total_symbols
)
# NEW: Publish enhanced indicators to data bus as tuples
try:
if hasattr(self, 'msgbus') and self.msgbus:
timestamp = int(time.time() * 1000)
# Publish regime indicators as tuple
indicator_tuple = (
timestamp,
float(bb_metrics['signal']),
bool(bb_metrics['bb_ready']),
float(temporal_metrics['velocity']),
str(temporal_metrics['velocity_trend']),
str(temporal_metrics['confidence_trend'])
)
self.msgbus.publish(REGIME_INDICATORS_TOPIC, indicator_tuple)
# Publish BB metrics as tuple (only if BB is ready)
if bb_metrics['bb_ready']:
bb_tuple = (
timestamp,
float(bb_metrics['signal']),
float(bb_metrics['sma']),
float(bb_metrics['upper_band']),
float(bb_metrics['lower_band']),
str(bb_metrics['bb_position']),
str(bb_metrics['momentum_signal'])
)
self.msgbus.publish(BB_METRICS_TOPIC, bb_tuple)
# Publish temporal patterns as tuple
temporal_tuple = (
timestamp,
float(temporal_metrics['velocity']),
float(temporal_metrics['avg_velocity']),
str(temporal_metrics['velocity_trend']),
str(temporal_metrics['confidence_trend']),
int(len(self.signal_history))
)
self.msgbus.publish(TEMPORAL_PATTERNS_TOPIC, temporal_tuple)
except Exception as e:
self.log.error(f"Failed to publish enhanced indicators: {e}")
# Log regime changes
if not self.regime_history or regime != self.regime_history[-1]:
self.log.info(f"REGIME CHANGE: {regime.value} | Bull: {bull_ratio:.2%} "
@@ -1150,6 +1344,19 @@ class DOLPHINRegimeActor(Actor):
self.log.info(f"{color_code}REGIME STATUS: {regime.value} | Bull: {bull_ratio:.2%} "
f"Bear: {bear_ratio:.2%} ({bullish}/{bearish}) | Processed: {self.processed_ticks} ticks{reset_code}")
# Enhanced indicator line after regime status
if bb_metrics['bb_ready']:
self.log.info(f"{color_code}BB INDICATORS: Signal:{bb_metrics['signal']:.2f} | "
f"SMA:{bb_metrics['sma']:.2f} | Upper:{bb_metrics['upper_band']:.2f} | "
f"Lower:{bb_metrics['lower_band']:.2f} | Pos:{bb_metrics['bb_position']} | "
f"Mom:{bb_metrics['momentum_signal']} | Vel:{temporal_metrics['velocity']:.2f} | "
f"VelTrend:{temporal_metrics['velocity_trend']} | ConfTrend:{temporal_metrics['confidence_trend']}{reset_code}")
else:
self.log.info(f"{color_code}BB INDICATORS: Signal:{bb_metrics['signal']:.2f} | "
f"Status:BUILDING_BB_HISTORY ({len(self.signal_history)}/{self.bb_period}) | "
f"Vel:{temporal_metrics['velocity']:.2f} | VelTrend:{temporal_metrics['velocity_trend']} | "
f"ConfTrend:{temporal_metrics['confidence_trend']}{reset_code}")
# NEW: Log symbol pattern and counts
if symbol_pattern: # Only if we have symbols to show
pattern_str = " ".join(symbol_pattern) + " " # Create pattern with spaces
@@ -1235,6 +1442,7 @@ class SILOQYNormalizerActor(Actor):
try:
# Publish directly to STRUCTURED_TOPIC to match original v3.28 behavior
self.msgbus.publish(STRUCTURED_TOPIC, tick)
pass
except Exception as e:
self.log.error(f"Nautilus ActorExecutor: Failed to publish to STRUCTURED_TOPIC: {e}")