docs: add docs with planning subdirectory for TODO features

This commit is contained in:
2025-08-31 15:08:08 +02:00
parent 34932dda3d
commit 6e63058884
97 changed files with 274555 additions and 0 deletions

View File

@@ -0,0 +1,299 @@
# SILOQY Hausdorff Implementation Analysis
## Clarification: Universal Threshold Issue
### Problem Identified
The research document contained a **critical contradiction**:
1. **Claimed**: "universal fractal dimension threshold of 1.25 as an early warning system for market corrections"
2. **Regime classification data showed**:
- **Trending markets**: Fractal dimension 1.0-1.3
- **Random walk regimes**: Fractal dimension ≈1.5
- **Range-bound markets**: Fractal dimension 1.7-2.0
- **Volatile/crisis regimes**: Fractal dimension > 1.8
### The Contradiction
Based on the regime classification ranges, a fractal dimension of **1.25 would indicate a TRENDING market** (within the 1.0-1.3 range), NOT a market correction warning. This directly contradicts the claim about it being an "early warning system for market corrections."
### Resolution
The document needs significant revision. For SILOQY implementation, focus on the **regime classification ranges** rather than the unsupported "1.25 universal threshold" claim.
## Trading Regime Analysis: Pros/Cons for Predictive Maximization
### **TRENDING MARKETS (FD 1.0-1.3) - HIGHEST RECOMMENDATION**
**Pros:**
- **Most predictable direction** - established momentum
- **Lower noise-to-signal ratio** - fractal dimension closer to 1.0 = smoother price action
- **Trend-following strategies excel** - clear directional bias
- **Risk management easier** - stops can be placed against trend direction
- **Consistent profit potential** - can ride trends for extended periods
**Cons:**
- **Late entry risk** - trends may be mature when detected
- **Whipsaw risk during transitions** - false breakouts at trend exhaustion
- **Lower volatility = smaller absolute gains** per time unit
**Trading Approach:** Trend-following, momentum strategies, breakout systems
### **RANDOM WALK REGIMES (FD ≈1.5) - AVOID COMPLETELY**
**Pros:**
- *None for directional trading*
**Cons:**
- **Zero predictability** - truly random price movements
- **High transaction costs** - frequent false signals
- **No exploitable patterns** - efficient market conditions
- **Stop-loss hunting** - random moves trigger stops frequently
**Trading Approach:** **STAND ASIDE** - preserve capital, wait for regime change
### **RANGE-BOUND MARKETS (FD 1.7-2.0) - MODERATE TO HIGH OPPORTUNITY**
**Pros:**
- **Mean reversion predictability** - prices tend to return to range center
- **Clear support/resistance levels** - defined risk parameters
- **High win rate potential** - if range holds, reversals are likely
- **Options strategies favorable** - time decay benefits sellers
- **Statistical certainty** - prices WILL return toward range center (mathematically inevitable)
- **Clear trigger points** - when price hits support/resistance, reversal probability is high
- **Defined probability zones** - the further from center, the higher probability of reversal
**Cons:**
- **Breakout risk** - ranges eventually break, causing losses
- **Lower profit per trade** - limited by range width
- **Requires precise timing** - entry/exit points critical
- **Choppy price action** - multiple false signals within range
**Trading Approach:** Mean reversion, range trading, short straddles/strangles
### **VOLATILE/CRISIS REGIMES (FD > 1.8) - HIGH RISK/REWARD**
**Pros:**
- **Massive profit potential** - large price moves create big opportunities
- **Strong momentum persistence** - once direction established, moves are powerful
- **Volatility premium expansion** - options become more valuable
- **Fast profits** - significant moves happen quickly
**Cons:**
- **Extreme unpredictability** - direction changes rapidly and violently
- **High drawdown risk** - wrong positions can be devastating
- **Emotional stress** - difficult to maintain discipline
- **Liquidity issues** - spreads widen, slippage increases
- **System failures** - extreme moves can break algorithmic assumptions
**Trading Approach:** Volatility trading, crisis alpha strategies, very tight risk management
## Revised Predictability Rankings
### **RANKING FOR PREDICTIVE MAXIMIZATION:**
**1. TRENDING MARKETS (FD 1.0-1.3) - BEST CHOICE**
- **Predictability: 8/10**
- **Profitability: 7/10**
- **Risk-Adjusted Returns: 9/10**
- **Consistency: 9/10**
**2. RANGE-BOUND MARKETS (FD 1.7-2.0) - HIGH OPPORTUNITY** *(Revised upward)*
- **Predictability: 8/10** *(Corrected from 6/10)*
- **Profitability: 6/10**
- **Risk-Adjusted Returns: 7/10** *(Revised upward)*
- **Consistency: 7/10**
**3. VOLATILE/CRISIS REGIMES (FD > 1.8) - SPECIALISTS ONLY**
- **Predictability: 3/10**
- **Profitability: 9/10**
- **Risk-Adjusted Returns: 4/10**
- **Consistency: 2/10**
**4. RANDOM WALK (FD ≈1.5) - AVOID**
- **Predictability: 0/10**
- **Profitability: 0/10**
- **Risk-Adjusted Returns: 0/10**
- **Consistency: 0/10**
### Key Insight on Range-Bound Markets
Range-bound markets offer **different but equally valuable predictability**:
- **Trending markets:** Predict direction continuation
- **Range-bound markets:** Predict direction reversal
Both are highly exploitable, just requiring different strategies.
## Hausdorff Implementation Strategy for SILOQY
### **Integration Architecture Overview**
**Within DOLPHIN Framework:**
DOLPHIN currently analyzes **500 symbols** using **15m candles** for correlation-based regime detection. Hausdorff dimension would add a **fractal layer** to this analysis.
**Dual-Layer Implementation:**
1. **Market-wide fractal regime** (like current DOLPHIN correlation analysis)
2. **Target asset fractal state** (BTC-specific for hand-tuned parameters)
### **Time Frame Strategy - Multi-Scale Approach**
**Primary Timeframe: 15m (matches existing DOLPHIN)**
- **Window size:** 50-100 candles (12.5-25 hours of data)
- **Update frequency:** Every new 15m candle close
- **Purpose:** Main regime classification for JERICHO state machine
**Secondary Timeframes for Confirmation:**
- **5m candles:** 150-300 points (12.5-25 hours) - faster regime change detection
- **1h candles:** 25-50 points (1-2 days) - longer-term regime confirmation
- **Daily candles:** 20-30 points (20-30 days) - structural regime context
**Multi-Scale Coherence Check:**
Cross-timeframe validation where **all scales must agree** for high-confidence regime classification:
```
IF (FD_5m ∈ trending AND FD_15m ∈ trending AND FD_1h ∈ trending)
THEN high_confidence_trending = TRUE
```
### **Data Requirements**
**For Market-Wide Analysis (500 symbols):**
- **OHLCV data** for fractal dimension calculation
- **Rolling window:** 100 x 15m candles per symbol
- **Memory footprint:** ~50MB (much smaller than current correlation matrices)
- **Update frequency:** Every 15m candle close
**For Target Asset (BTC) Enhanced Analysis:**
- **Tick-by-tick data** (from Nautilus integration)
- **Multiple timeframes simultaneously**
- **Real-time Bollinger Band distances** (already planned for JERICHO)
- **Volume profile data** for fractal dimension confirmation
### **Implementation Layers**
**Layer 1: Fast Fractal Screening (Higuchi Method)**
- **Purpose:** Real-time regime filtering across all 500 symbols
- **Calculation:** O(N×k_max) complexity - very fast
- **Output:** Basic regime classification (trending/ranging/crisis/random)
- **Integration point:** Feeds into existing DOLPHIN correlation analysis
**Layer 2: Precision Fractal Analysis (Correlation Dimension)**
- **Purpose:** High-accuracy analysis for target asset (BTC)
- **Calculation:** More computationally intensive but higher precision
- **Output:** Precise fractal dimension values for JERICHO thresholds
- **Integration point:** Direct input to JERICHO state machine
**Layer 3: Multi-Scale Validation**
- **Purpose:** Cross-timeframe regime confirmation
- **Calculation:** Lightweight comparison across timeframes
- **Output:** Confidence scores for regime classifications
- **Integration point:** Enhances JERICHO decision confidence
### **Data Flow Integration**
**Current DOLPHIN Flow:**
```
Symbol Discovery → Price Data Fetch → Correlation Analysis → Regime Detection
```
**Enhanced DOLPHIN Flow:**
```
Symbol Discovery → Price Data Fetch →
├── Correlation Analysis (existing)
├── Fast Fractal Screening (Layer 1)
└── Combined Regime Classification
```
**Target Asset Enhancement:**
```
BTC Price Stream →
├── Multi-timeframe Fractal Analysis (Layer 2)
├── Bollinger Band Distance Calculation
└── JERICHO State Machine Input
```
### **JERICHO State Machine Integration Points**
**Regime Detection Enhancement:**
- **Current:** DOLPHIN correlation percentages (bull/bear ratios)
- **Enhanced:** DOLPHIN + fractal regime classification + confidence scores
**Threshold Modifications:**
```python
# Current JERICHO logic
if bull_pct >= 98.5% and consecutive_scans >= 2:
signal = LONG
# Enhanced logic
if (bull_pct >= 98.5% and consecutive_scans >= 2 and
fractal_regime == TRENDING and fractal_confidence > 0.8):
signal = LONG
```
**New State Additions:**
- **FRACTAL_WATCHING:** When fractal dimension approaches regime boundaries
- **MULTI_SCALE_CONFLICT:** When timeframes disagree on regime
- **FRACTAL_CONFIRMATION:** When fractal analysis confirms correlation-based signals
### **Computational Considerations**
**Processing Pipeline:**
1. **Streaming updates:** As new 15m candles arrive
2. **Incremental calculation:** Update fractal dimensions using sliding windows
3. **Parallel processing:** 500 symbols can be processed simultaneously
4. **Caching strategy:** Store intermediate results for efficiency
**Performance Targets:**
- **Layer 1 (500 symbols):** <5 seconds per 15m update
- **Layer 2 (BTC focus):** <1 second per update
- **Layer 3 (validation):** <0.5 seconds per update
- **Total overhead:** <6.5 seconds (fits within 15m window)
### **Configuration Strategy**
**Adaptive Parameters:**
- **Window sizes** adjust based on volatility (existing hand-tuned parameters)
- **Threshold values** adapt to different market conditions
- **Confidence weights** for combining correlation + fractal signals
**Asset-Specific Tuning:**
- **BTC parameters:** Use existing hand-tuned volatility thresholds
- **Market-wide parameters:** Generic settings for broad regime detection
- **Dynamic adjustment:** Learn optimal parameters over time
### **Risk Management Integration**
**Regime Transition Detection:**
- **Early warning:** Fractal dimension approaching transition zones
- **Confirmation:** Both correlation and fractal methods agree on regime change
- **Confidence scoring:** Strength of regime classification
**Fallback Mechanisms:**
- **Data quality issues:** Fall back to correlation-only analysis
- **Computational overload:** Use Layer 1 (fast) method only
- **Regime uncertainty:** Increase JERICHO conservatism
### **Output Integration**
**For JERICHO State Machine:**
```json
{
"fractal_regime": "TRENDING",
"fractal_dimension": 1.15,
"regime_confidence": 0.87,
"multi_scale_agreement": true,
"time_to_transition": "2-3 periods",
"enhanced_signal": "LONG_CONFIRMED"
}
```
**For TUI Display:**
```
FRACTAL: TRENDING (FD:1.15, Conf:87%)
SCALES: 5m✓ 15m✓ 1h✓ | Transition: 2-3 periods
```
## Summary
This approach **enhances rather than replaces** the existing proven DOLPHIN-JERICHO system, adding fractal analysis as a **confirming layer** while maintaining the core correlation-based regime detection that has been hand-tuned for Bitcoin. The implementation focuses on:
1. **Multi-scale validation** across timeframes
2. **Layered approach** from fast screening to precision analysis
3. **Integration points** that enhance rather than disrupt existing logic
4. **Performance targets** that fit within existing computational constraints
5. **Risk management** with fallback mechanisms for reliability